• 제목/요약/키워드: $MnO_2$doping

검색결과 122건 처리시간 0.021초

Nd2O3 첨가에 따른 Mn-Zn ferrite의 고주파 특성에 관한 연구 (A Study on the high frequency properties of Mn-Zn ferrite with Nd2O3 addition)

  • 최우성
    • 한국재료학회지
    • /
    • 제13권4호
    • /
    • pp.228-232
    • /
    • 2003
  • The effects of$ Nd_2$$O_3$addition on the properties of Mn-Zn ferrite were investigated in the doping concentration range from 0.05 to 0.25 wt%. All samples were prepared by standard fabrication of ferrite ceramics. With increasing the Neodymium oxides, specific density and initial permeability increased on the whole. But, the tendencies such as upper result had the measured value on limitation and characteristics saturated or decreased properties after that. With increasing the content of Neodymium oxides. both the real and imaginary component of complex permeability and the magnetic loss(tan$\delta$) increased. Because reason that magnetic loss increases is high ratio that a real department increases than imaginary department. Magnetic loss increased none the less for increasing the real department related with magnetic permeability. But, the magnetic loss of ferrite doped with the Neodymium oxides were lower than that of none doped Mn-Zn ferrite. The small amount of percent Neodymium oxides in Mn-Zn ferrite composition led to enhancement of resistivity in bulk, and more so in the grain boundary.

Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals and Polycrystalline Ceramics

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • 한국세라믹학회지
    • /
    • 제55권2호
    • /
    • pp.166-173
    • /
    • 2018
  • In order to investigate the effect of Mn on the dielectric and piezoelectric properties of PMN-PT [$Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$], four different types of 71PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: (1) Undoped single crystals, (2) undoped polycrystalline ceramics, (3) Mn-doped single crystals, and (4) Mn-doped polycrystalline ceramics. In the case of single crystals, the addition of 0.5 mol% Mn to PMN-PT decreased the dielectric constant ($K_3{^T}$), piezoelectric charge constant ($d_{33}$), and dielectric loss (tan ${\delta}$) by about 50%, but increased the coercive electric field ($E_C$) by 50% and the electromechanical quality factor ($Q_m$) by 500%, respectively. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$) and thus specimens changed from piezoelectrically soft-type to piezoelectrically hard-type. This Mn effect was more significant in single crystals than in ceramics. These results demonstrate that Mn-doped 71PMN-29PT single crystals, because they are piezoelectrically hard and simultaneously have high piezoelectric and electromechanical properties, have great potential for application in fields of SONAR transducers, high intensity focused ultrasound (HIFU), and ultrasonic motors.

Enhanced Electrochemical Properties of All-Solid-State Batteries Using a Surface-Modified LiNi0.6Co0.2Mn0.2O2 Cathode

  • Lim, Chung Bum;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.411-420
    • /
    • 2020
  • Undesirable interfacial reactions between the cathode and sulfide electrolyte deteriorate the electrochemical performance of all-solid-state cells based on sulfides, presenting a major challenge. Surface modification of cathodes using stable materials has been used as a method for reducing interfacial reactions. In this work, a precursor-based surface modification method using Zr and Mo was applied to a LiNi0.6Co0.2Mn0.2O2 cathode to enhance the interfacial stability between the cathode and sulfide electrolyte. The source ions (Zr and Mo) coated on the precursor-surface diffused into the structure during the heating process, and influenced the structural parameters. This indicated that the coating ions acted as dopants. They also formed a homogenous coating layer, which are expected to be layers of Li-Zr-O or Li-Mo-O, on the surface of the cathode. The composite electrodes containing the surface-modified LiNi0.6Co0.2Mn0.2O2 powders exhibited enhanced electrochemical properties. The impedance value of the cells and the formation of undesirable reaction products on the electrodes were also decreased due to surface modification. These results indicate that the precursor-based surface modification using Zr and Mo is an effective method for suppressing side reactions at the cathode/sulfide electrolyte interface.

Mn-Modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3] Single Crystals for High Power Piezoelectric Transducers

  • Oh, Hyun-Taek;Lee, Jong-Yeb;Lee, Ho-Yong
    • 한국세라믹학회지
    • /
    • 제54권2호
    • /
    • pp.150-157
    • /
    • 2017
  • Three types of piezoelectric single crystals [PMN-PT (Generation I $[Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3]$), PMN-PZT (Generation II $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$), PMN-PZT-Mn (Generation III)] were grown by the solid-state single crystal growth (SSCG) method, and their dielectric and piezoelectric properties were measured and compared. Compared to (001) PMN-PT and PMN-PZT single crystals, the (001) PMN-PZT-Mn single crystals exhibited a higher transition temperature between the rhombohedral and tetragonal phases ($T_{RT}=144^{\circ}C$), as well as a higher coercive electric field ($E_C=6.3kV/cm$) and internal bias field ($E_I=1.6kV/cm$). The (011) PMN-PZT-Mn single crystals showed the highest coercive electric field ($E_C=7.0kV/cm$), and the highest stability of $E_C$ and $E_I$ during 60 cycles of polarization measurement. These results demonstrate that both Mn doping (for higher electromechanical quality factor ($Q_m$)) and a (011) crystallographic orientation (for higher coercive electric field and stability) are necessary for high power transducer applications of these piezoelectric single crystals. Specifically, the (011) PMN-PZT-Mn single crystal (Gen. III) had the highest potential for application in the fields of SONAR transducers, high intensity focused ultrasound (HIFU), ultrasonic motors, and others.

리튬 2차 전지용 고용량 스피넬계 양극물질 연구 (A study on the Spinel phase cathode materials with high capacity for lithium secondary batteries)

  • 홍기주;선양국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.106-108
    • /
    • 2001
  • As 3V cathode material, a new doping spinel material, LiMn1.6Se0.4O4 powder with a phase-pure polycrystalline was synthesized by a sol-gel method. In spite of Jahn-teller distortion in 3V region($2.4{\sim}3.5V$), the LiMn1.6Se0.4O4 electrode shows no capacity loss. The material in the 3V region initially delivers a discharge capacity of 100mAh/g which increase with cycling to reach 105mAh/g after 90cycles. And 5V cathode material LiNi0.5-xMxMn1.5O4(M=Cr, V, Fe) compounds have been synthesized by sol-gel method. a series of electroactive spinel compounds, LiNi0.5-xMxMn1.5O4(M=Cr, V, Fe) has been studied by crystallographic and electrochemical methods. The material presents only one plateau at around 4.5 V vs. Li/Li+ with a large discharge capacity of 152mAh/g and fairly good cyclability.

  • PDF

Mn-Zn 훼라이트의 $GeO_{2}$$SnO_{2}$ 첨가효과 (Doping Effects with $GeO_{2}$ and $SnO_{2}$ in Mn-Zn Ferrites)

  • 최용석;유병두;김종오
    • 한국자기학회지
    • /
    • 제2권2호
    • /
    • pp.99-104
    • /
    • 1992
  • 상용의 Mn-Zn 훼라이트에 $GeO_{2}$$SnO_{2}$를 0.05, 0.3, 1.0 wt% 첨가하여 투자율의 온도특성, 손실인자 및 미세구조변화를 X-선 회절분석기, 주사전자현미경 및 LCR meter를 이용하여 관찰 하였다. $SnO_{2}$, $GeO_{2}$의 첨가량이 증가함에 따라, 투자율의 SPM(Secondary Peak Maximum)는 약 $80^{\circ}C$로부터 상온이하로 이동하였다. 미세구조의 현격한 변화없이 수반된 이러한 SPM의 이동은 이온 반경이 다른 Sn과 Ge이 주격자에 고용되었기 때문으로 판단된다. 투자율 및 손실인자의 주파수 의존성은 투자율이 100 kHz까지 모든조성에서 큰 변화가 없음을 알수있었고 손실인자는 10 kHz에서 최대값을 얻을 수 있었다.

  • PDF

$La_2O_3$가 첨가된 modified PZT계의 제조 및 특성 (Fabrication and characteristics of modified PZT System doped With $La_2O_3$)

  • 황학인;박준식;오근호
    • 한국결정성장학회지
    • /
    • 제7권3호
    • /
    • pp.418-427
    • /
    • 1997
  • $La_2O_3$가 각각 0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 mole% 첨가된 $0.05pb(Sn_{0.5}Sb_{0.5})O_3+0.11PbTiO_30.84PbZroO_3+0.4Wt%MnO_2$ (이하 0.05PSS -0.11PT-0.84PZ+0.4wt%$MnO_2$)계를, $1250^{\circ}C$에서 $PbZrO_3$를 분위기 분말로 사용하여 성형체 무게의 1/2을 함께 넣고 소결체를 제조하여 그 특성을 분석하였다. 소결체의 밀도는 7.683 g/$\textrm {cm}^3$에서 7.515 g/$\textrm {cm}^3$ 범위였으며, 3 mole% $La_2O_3$를 첨가한 경우 가장 높은 값을 나타내었다. 0에서 5 mole% 범위에서 $La_2O_3$ 첨가량을 증가시킬 때 평균 입경이 9.0 $\mu \textrm{m}$에서 1.3 $\mu\textrm{m}$까지 감소되었다. 결정구조의 경우 $La_2O_3$첨가량을 0에서 1 mole%로 할 때 0.05PSS-0.11 PT-0,84PZ계에서 고용된 상을 형성하였으나 3, 5 mole%로 첨가량을 증가시킴에 따라 제2차 산이 형성되었고, 소결체를 $120^{\circ}C$ 또는 $140^{\circ}C$에서 $5 KV_{DC}$ /mm로 20분간 poling 전후에 $La_2O_3$ 첨가량이 0 에서 3 mlole%까지 증가될수록 1KHz에서의 유전 상수는 증가되었으며, 유전손실은 모든 경우에서 1 % 미만의 값을 나타내었다. $La_2$O$_3$첨가량이 0, 0.5, 1, 3 mole%로 증가됨에 따라 큐리온도가 208$^{\circ}C$, 183$^{\circ}C$, $152^{\circ}C$ 그리고 $127^{\circ}C$로 감소되었다. $La_2O_3$가 증가됨에 따라 대체로 $K_{p}$ 증가되었으며 0.7 mlole%의 $La_2O_3$를 첨가한 소결체를 $140^{\circ}C$에서 poling한 경우 가장 높은 $K_p$값으로 14.5 %를 나타내었다.

  • PDF

New doping technique of Mn Activator on ZnS Host for Photoluminescence Enhancement

  • Wentao, Zhang;Lee, Hong-Ro
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.9-10
    • /
    • 2008
  • Triple layers structure of $SiO_2$/ZnS:Mn/ZnS was synthesized by using ion substitution and chemical precipitation method. Each layer thickness was controlled by adjusting the concentration of manganese (II) acetate ($Mn(CH_3COO)_2$) and tetraethyl orthosilicate (TEOS). The structure and morphology of prepared phosphors were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe microscopic analyzer (EPMA). Photoluminescence (PL) properties of ZnS with different layer thickness and amount of Mn activator were analyzed by PL spectrometer. PL emission intensity and PL stability were analyzed for evaluating effects of Mn activator.

  • PDF

Sb/Bi비가 ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 바리스터의 소결과 입계 특성에 미치는 영향 (Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 Varistor)

  • 홍연우;이영진;김세기;김진호
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.878-885
    • /
    • 2012
  • In this study we aims to examine the co-doping effects of 1/3 mol% $Mn_3O_4+Co_3O_4$ (1:1) on the reaction, microstructure, and electrical properties such as the bulk defects and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Co-doped ZBS, ZBS(MCo) varistors were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Mn rather than Co. Pyrochlore on cooling was reproduced in all systems however, spinel (${\alpha}$- or ${\beta}$-polymorph) did not formed in Sb/Bi=0.5. More homogeneous microstructure was obtained in $Sb/Bi{\geq}1.0$ In ZBS(MCo), the varistor characteristics were improved drastically (non-linear coefficient, ${\alpha}$=30~49), and seemed to form $Zn_i^{..}$(0.17 eV) and $V_o^{\bullet}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy (IS & MS), the grain boundaries have divided into two types, i.e. the one is tentatively assign to $ZnO/Bi_2O_3(Mn,Co)/ZnO$ (0.47 eV) and the other ZnO/ZnO (0.80~0.89 eV) homojunctions.

Undoped and heavily MgO-doped $LiNbO_3$ 결정의 성장 및 결함구조 (Growth and defect structures of undoped and heavily MgO-doped LiNbO3 single crystals)

  • 김상수
    • 한국결정성장학회지
    • /
    • 제9권5호
    • /
    • pp.447-453
    • /
    • 1999
  • Czochralski법으로 congruent한 조성(48.6 mol% $LiNbO_2$)과 $LiNbO_3$: Mg(4.5, 6.0, 10.0, 20.0mol%), $LiNbO_3$ : Mn(0.1 mol%), $LiNbO_3$: Fe(0.05 mol%), $LiNbO_3$ : (Mg(4.5)+Mn(0.1), Fe(0.05 mol%)), LiNbO3 : (Mg(20.0)+Mn(0.1), Fe(0.05 mol%))인 융액으로부터 결정을 c-축 방향으로 성장시켰다. 이 결정들은 상온에서의 XRD pattern과 상온~$1230^{\circ}C$의 온도영역과 100Hz~10MHz의 주파수영역에서의 유전상수, 상온에서의 UV_VIS, IR 스펙트럼, 결정내의 Mn2+, Fe3+ 이온에 대한 ESR 스펙트럼 등을 측정하였는데 XRD pattern과 상전이 온도, UV 흡수단, OH- 이온에 의한 스펙트럼, ESR 스펙트럼 등의 Mg첨가량 의존성으로부터 Mg가 첨가된 $LiNbO_3$ 결정의 결함구조에 대해서 논의하였다. congruent한 $LiNbO_3$결정과 Mg를 첨가한 $LiNbO_3$ 결정에서의 Mn2+ 이온은 Mg의 첨가량에 관계없이 Li+을 치환한다. 그러나 congruent한 $LiNbO_3$ 결정과 Mg를 첨가한 $LiNbO_3$ 결정에서의 Fe3+ 이온은 Mg가 4.5 mol% 첨가된 결정에서는 Li+ 자리를 Mg가 6.0 mol% 이상 첨가된 결정에서는 {{{{ { Nb}`_{Li } ^{5+ } }}}} 자리를 치환한다.

  • PDF