• 제목/요약/키워드: $Mg_{2}Si$

검색결과 1,772건 처리시간 0.03초

기계적 활성화된 분말로부터 고주파유도 가열 연소합성에 의한 나노구조 Mg2SiO4-MgAl2O4 복합재료 제조 및 기계적 특성 (Mechanical Properties and Fabrication of Nanostructured Mg2SiO4-MgAl2O4 Composites by High-Frequency Induction Heated Combustion)

  • 손인진;강현수;홍경태;도정만;윤진국
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.614-618
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The rapid sintering of nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites was investigated by a high-frequency induction heating sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Highly dense nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites were produced with simultaneous application of 80MPa pressure and induced output current of total power capacity (15 kW) within 2min. The sintering behavior, gain size and mechanical properties of $MgAl_2O_4-Mg_2SiO_4$ composites were investigated.

고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향 (Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제31권1호
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

시멘트 모르타르의 응결 지연 효과에 관한 연구 (A Study on the Retarding effects of Cememtn Mortar Setting)

  • 이재한;이경희;김홍기
    • 한국세라믹학회지
    • /
    • 제33권3호
    • /
    • pp.307-312
    • /
    • 1996
  • In following addition of 0.3, -0.6, 0.8, 1.0 and 5 weight percent MgSiF66H2O studies have been made of the setting and hardening characteristics of ordinary portland cement. MgSiF66H2O retarded the setting time of ordinary portland cement and extended the induction pariod of the hydration. In ordinary portland cement the setting characteristics were drastically altered especially at high MgSiF66H2O contents. Evidence was also obtained by the formation of a KSiF6 which was very fine particle. The results wee as follows. 1. Slump was slightly decreased when MgSiF66H2O added. 2. Setting time was retarded depending on the amount of retarding agent 2 to 8 hours 3. Compressive strength was almost same or some increased in comparision with opc. 4. When MgSiF66H2O was added to cement paste K2SiF6 were formed It was fine-sized distributed uniformly in cement grain and caused retardation of cement setting.

  • PDF

기계적 합금화에 의한 Mg-Si계 열전화합물의 합성 및 평가 (Synthesis and characterization of Mg-Si thermoelectric compound subjected to mechanical alloying)

  • 이충효
    • 한국결정성장학회지
    • /
    • 제17권3호
    • /
    • pp.121-127
    • /
    • 2007
  • 본 연구에서는 나노결정립의 $Mg_2Si$ 열전화합물을 제조하기 위하여 기계적 합금화(MA)를 적용하였다. 단상의 초미세 $Mg_2Si$ 열전화합물을 얻기 위하여 최적 볼밀조건 및 열처리 조건을 X선 회절분석과 시차주사 열량분석을 이용하여 조사하였다. $Mg_{66.7}Si_{33.3}$ 혼합분말을 $20{\sim}180$시간까지 볼밀 처리한 경우 모든 시료에서 $220^{\circ}C$$570^{\circ}C$ 근방에 broad한 발열 반응이 관찰되었다. 한편 $Mg_{66.7}Si_{33.3}$ 혼합분말을 260시간 동안 볼밀 처리한 경우 $230^{\circ}C$에 예리한 발열피크를 보였다. 단상의 $Mg_2Si$ 화합물은 $Mg_{66.7}Si_{33.3}$ 혼합분말을 60시간 동안 MA처리 후 $620^{\circ}C$까지 열처리함으로써 얻을 수 있었다. MA분말시료의 치밀화는 50MPa, $800{\sim}900^{\circ}C$에서 흑연다이를 사용하여 SPS 소결을 실시하였다. Mg-Si계 MA 분말시료의 SPS 소결시 수축은 $200^{\circ}C$ 근방에서 현저하게 관찰되었다. SPS법으로 고화된 성형체의 밀도측정 결과, 모든 시료에서 이론밀도의 94% 이상 금속광택을 나타내는 치밀한 소결체임을 알 수 있었다.

A possibility of enhancing Jc in MgB2 film grown on metallic hastelloy tape with the use of SiC buffer layer

  • Putri, W.B.K.;Kang, B.;Ranot, M.;Lee, J.H.;Kang, W.N.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.20-23
    • /
    • 2014
  • We have grown $MgB_2$ on SiC buffer layer by using metallic Hastelloy tape as the substrate. Hastelloy tape was chosen for its potential practical applications, mainly in the power cable industry. SiC buffer layers were deposited on Hastelloy tapes at 400, 500, and $600^{\circ}C$ by using a pulsed laser deposition method, and then by using a hybrid physical-chemical vapor deposition technique, $MgB_2$ films were grown on the three different SiC buffer layers. An enhancement of critical current density values were noticed in the $MgB_2$ films on SiC/Hastelloy deposited at 500 and $600^{\circ}C$. From the surface analysis, smaller and denser grains of $MgB_2$ tapes are likely to cause this enhancement. This result infers that the addition of SiC buffer layers may contribute to the improvement of superconducting properties of $MgB_2$ tapes.

LEED, SRPES를 이용한 Mg/Si(111)계의 연구 (The Study of Mg/Si(111)system using LEED and SRPES)

  • 안기석;박래준;김정선;박종윤;이순보
    • 한국진공학회지
    • /
    • 제3권3호
    • /
    • pp.275-279
    • /
    • 1994
  • Low Energy Electron Diffraction(LEED)와 Synchrotron Radiation Photoelectron Spe-ctroscopy (SRPES)를 이용하여 $Si(111)7{\times}7$ 표면위에 Mg의 흡착에 의한 초기계면과 실리사이드의 형성에 대하여 연구하였다. 기판온도를 상온으로 유지하는 경우 증착량의 증가에 따라 LEED pattern은 diffuse 7${\times}$7 diffuse 1${\times}$1, $2/3sqrt{3}{\times}2/3sqrt{3} R30^{\cdot}$ 구조로 변화하였다. $300^{\cdot}C$의 기판온도에서 관측되는 1${\times}$1 구조에 대한 surface sensitive Si 2p core level spectrum의 fitting 결과로부터 이 1${\times}$1구조는 적층성장한 Mg2Si 박막에 의한 구조임을 알수 있다. 그러나 이 1${\times}$1구조를 가진 Mg2Si 박막이 성장하지 못함을 예상할 수 있다. 그결과 Mg의 계속된 증착에도 불구하고 비정질의 Mgqkr막이 성장하였다.

  • PDF

Superconducting properties of SiC-buffered-MgB2 tapes

  • Putri, W.B.K.;Kang, B.;Duong, P.V.;Kang, W.N.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.1-4
    • /
    • 2015
  • Production of $MgB_2$ film on metallic Hastelloy with SiC as the buffer layer was achieved by means of hybrid physical-chemical vapor deposition technique, whereas SiC buffer layers with varied thickness of 170 and 250 nm were fabricated inside a pulsed laser deposition chamber. Superconducting transition temperature and critical current density were verified by transport and magnetic measurement, respectively. With SiC buffer layer, the reduced delaminated area at the interface of $MgB_2$-Hastelloy and the slightly increased $T_c$ of $MgB_2$ tapes were clearly noticed. It was found that the upper critical field, the irreversibility field and the critical current density were reduced when $MgB_2$ tapes were buffered with SiC buffer layer. Clarifying the mechanism of SiC buffer layer in $MgB_2$ tape in affecting the superconducting properties is considerably important for practical applications.

LED용 Sr3MgSi2O8:Eu청색 형광체의 발광특성 (Luminescence Characteristics of Sr3MgSi2O8:Eu Blue Phosphor for Light Emitting Diodes)

  • 최경재;박정규;김경남;김창해;김호건
    • 한국세라믹학회지
    • /
    • 제41권8호
    • /
    • pp.573-577
    • /
    • 2004
  • Eu$^{2+}$를 활성제로 Sr$_3$MgSi$_2$ $O_{8}$ 청색 형광체를 합성하고, Sr$_3$MgSi$_2$ $O_{8}$:Eu 청색 형광체를 InGaN의 UV chip에 도포하여 청색 LED Lamp를 제조하였다. 제조된 청색 LED Lamp는 405nm와 460nm에서 두 개의 파장을 나타내고 있다. 405nm의 파장은 InGaN의 활성영역으로부터의 radiative recombination 때문에 나타나는 피크이다. 여기에서 나오는 405nm의 발광은 본 Sr$_3$MgSi$_2$ $O_{8}$:Eu 청색 형광체의 여기원으로 사용된다 460nm에서의 발광 밴드는 Sr$_3$MgSi$_2$ $O_{8}$ 모체내에서 Eu$^{2+}$ 이온의 radiative recombination에 의한 것이다. 발광효율이 좋은 Sr$_3$MgSi$_2$ $O_{8}$:Eu 청색 형광체를 이용하여 UV 청색 LED Lmp를 제조한 결과, 에폭시와 청색 형광체의 무게 비율이 1$.$0.202에서 가장 좋은 광도값을 얻을 수 있었다. 이때 색좌표는 CIE x=0.1417, CIE y=0.0683이었다.

Bi-materials of Al-Mg Alloy Reinforced with/without SiC and Al2O3 Particles; Processing and Mechanical Properties

  • Chang, Si-Young;Cho, Han-Gyoung;Kim, Yang-Do
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.354-361
    • /
    • 2007
  • The bi-materials with Al-Mg alloy and its composites reinforced with SiC and $Al_2O_3$ particles were prepared by conventional powder metallurgy method. The A1-5 wt%Mg and composite mixtures were compacted under $150{\sim}450\;MPa$, and then the mixtures compacted under 400 MPa were sintered at $773{\sim}1173K$ for 5h. The obtained bi-materials with Al-Mg/SiCp composite showed the higher relative density than those with $Al-Mg/Al_2O_3$ composite after compaction and sintering. Based on the results, the bi-materials compacted under 400 MPa and sintered at 873K for 5h were used for mechanical tests. In the composite side of bi-materials, the SiC particles were densely distributed compared to the $Al_2O_3$ particles. The bi-materials with Al-Mg/SiC composite showed the higher micro-hardness than those with $Al-Mg/Al_2O_3$ composite. The mechanical properties were evaluated by the compressive test. The bi-materials revealed almost the same value of 0.2% proof stress with Al-Mg alloy. Their compressive strength was lower than that of Al-Mg alloy. Moreover, impact absorbed energy of bi-materials was smaller than that of composite. However, the bi-materials with Al-Mg/SiCp composite particularly showed almost similar impact absorbed energy to $Al-Mg/Al_2O_3$ composite. From the observation of microstructure, it was deduced that the bi-materials was preferentially fractured through micro-interface between matrix and composite in the vicinity of macro-interface.

Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향 (Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling)

  • 이준호;박성현;이상화;손승배;이석재;정재길
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.