• Title/Summary/Keyword: $Mg_{2}Si$

검색결과 1,772건 처리시간 0.029초

Al-Mg계 합금과 Al-Si계 합금의 다이캐스팅 응고과정의 차이 (Difference in Solidification Process between Al-Mg Alloy and Al-Si Alloy in Die-Casting)

  • 최세원;김영찬;조재익;강창석;홍성길
    • 한국재료학회지
    • /
    • 제22권2호
    • /
    • pp.82-85
    • /
    • 2012
  • The effect of the alloy systems Al-Mg alloy and Al-Si alloy in this study on the characteristics of die-casting were investigated using solidification simulation software (MAGMAsoft). Generally, it is well known that the casting characteristics of Al-Mg based alloys, such as the fluidity, feedability and die soldering behaviors, are inferior to those of Al-Si based alloys. However, the simulation results of this study showed that the filling pattern behaviors of both the Al-Mg and Al-Si alloys were found to be very similar, whereas the Al-Mg alloy had higher residual stress and greater distortion as generated due to solidification with a larger amount of volumetric shrinkage compared to the Al-Si alloy. The Al-Mg alloy exhibited very high relative numbers of stress-concentrated regions, especially near the rib areas. Owing to the residual stress and distortion, defects were evident in the Al-Mg alloy in the areas predicted by the simulation. However, there were no visible defects observed in the Al-Si alloy. This suggests that an adequate die temperature and casting process optimization are necessary to control and minimize defects when die casting the Al-Mg alloy. A Tatur test was conducted to observe the shrinkage characteristics of the aluminum alloys. The result showed that hot tearing or hot cracking occurred during the solidification of the Al-Mg alloy due to the large amount of shrinkage.

고집적 반도체 배선용 Cu(Mg) 박막의 전기적, 기계적 특성 평가 (Electrical and Mechanical Properties of Cu(Mg) Film for ULSI Interconnect)

  • 안재수;안정욱;주영창;이제훈
    • 마이크로전자및패키징학회지
    • /
    • 제10권3호
    • /
    • pp.89-98
    • /
    • 2003
  • 반도체 소자의 배선용 재료로서 사용가능한 합금원소 Mg를 첨가한 Cu(Mg) 박막의 기계 및 전기적 특성 변화를 조사하였다. Cu(2.7at.%Mg) 박막은 열처리를 할 경우 Cu 박막에 비하여 표면거칠기는 약 1/10 정도로 줄고 $SiO_2$와의 접착력도 2배 이상 향상된 결과를 나타내었다. 또한 $300^{\circ}C$이상의 온도에서 10분 이상 열처리를 할 경우 급격한 저항감소를 보여주었는데 이는 Mg 원소의 확산으로 인해 표면 및 계면에서 Mg 산화물이 형성되고 내부에는 순수 Cu와 같이 되었기 때문이다. 경도 및 열응력에 대한 저항력도 Cu박막에 비해 우수한 것으로 나타났으며 열응력으로 인해 Cu 박막에 나타나던 표면 void가 Cu(Mg) 박막에서는 전혀 관찰되지 않았다. EM Test 결과 lifetime은 2.5MA/$cm^2$, $297^[\circ}C$에서 순수 Cu 라인보다 5배 이상 길고 BTS Test 결과 Capacitance-Voltage 그래프의 플랫 밴드 전압(V$_{F}$ )의 shift현상이 Cu에서는 나타났지만 Cu(Mg) 박막에서는 발생하지 않는 우수한 신뢰성을 보여주었다. 누설전류 측정을 통한 $SiO_2$의 파괴시간은 Cu에 비하여 약 3배 이상 길어 합금원소에 의한 확산방지 효과가 있음을 확인하였다.

  • PDF

Silicon Application on Standard Chrysanthemum Alleviates Damages Induced by Disease and Aphid Insect

  • Jeong, Kyeong-Jin;Chon, Young-Shin;Ha, Su-Hyeon;Kang, Hyun-Kyung;Yun, Jae-Gill
    • 원예과학기술지
    • /
    • 제30권1호
    • /
    • pp.21-26
    • /
    • 2012
  • To elucidate the role of silicon in biotic stress such as pests and diseases, standard chrysanthemum was grown in pots filled with soil without application of pesticide and fungicide. Si treatment was largely composed of three groups: $K_2SiO_3$ (50, 100, and $200mg{\cdot}L^{-1}$), three brands of silicate fertilizer (SiF1, SiF2, and SiF3) and tap water as a control. Si sources were constantly drenched into pots for 14 weeks. Application high concentration $K_2SiO_3$ ($200mg{\cdot}L^{-1}$) and three commercial Si fertilizers for 14 weeks improved growth parameters such as plant height and the number of leaves. In the assessment of disease after 4 weeks of Si treatment, percentage of infected leaves was not significantly different from that of control. After 14 weeks of Si treatment, however, the infected leaves were significantly reduced with a 20-50% decrease in high concentration ($200mg{\cdot}L^{-1}$) of potassium silicate and all commercial silicate fertilizers. Colonies of aphid insect (Macrosiphoniellas anborni) were also reduced in Si-treated chrysanthemum, showing 40-57% lower than those of control plants. Accumulation of silicon (approximately $5.4-7.1mg{\cdot}g^{-1}$ dry weight) in shoots of the plants was higher in Si-supplemented chrysanthemum compared to control plants ($3.3mg{\cdot}g^{-1}$ dry weight). These results indicate that using potassium silicate or silicate fertilizer may be a useful for management of disease and aphid insect in soil-cultivated chrysanthemum.

무가압 침윤법에 의한 $Al_2$O$_.3$/Al 복합재료 제조와 기계적 특성 (Fabrication and Mechanical Property of $Al_2$O$_.3$/Al Composite by Pressureless Infiltration)

  • 이동윤;박상환;이동복
    • 한국세라믹학회지
    • /
    • 제35권3호
    • /
    • pp.303-309
    • /
    • 1998
  • The fabrication of Al2O3/Al composite by pressureless infiltration was investigated by the change of Mg and Si content in Al alloy infiltration process and infiltration atmosphere. The effect of alloying elements infiltration atmosphere and interfacial reactants between Al alloy matrix and Al2O3 particles were in-vestigated in terms of bendingstrength and harness test,. The fabrication of Al2O3/Al composite by the vestigated in terms of bending strength and hardness test. The fabrication of Al2O3/Al composite by the pressureless infiltration was done in nitrogen atmosphere with Mg in Al alloy. It was successfully fabricated at $700^{\circ}C$ according to Mg contents in Al alloy and infiltration condition. Because Mg in the Al alloy and ni-trogen atmosphere of infiltratio condition produced Mg-N compound(Mg3N2) it decreased the wetting an-gle between molten Al alloy and Al2O3 particles by coating on surface of Al2O3 particles. The fracture strength of Al2O3/Al-Mg composite was 800MPa and Al2O3/Al-Si-Mg composite was 400MPa. Si in Al alloy decreased the interfacial strength between Al alloy matrix and Al2O3 particles.

  • PDF

기판에 따른 BST 박막의 RF Power 의존성 (Study on RF power dependence of BST thin film by the different substrates)

  • 최명률;이태일;박인철;김홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.22-25
    • /
    • 2002
  • In this paper, we deposited MgO buffer layer on p-type (100)Si substrate in the condition of substrate temperature 400$^{\circ}C$, working gas ratio Ar:O$_2$=80:20, RF Power 50W, working pressure 10mtorr, and the thickness of the film was about 300${\AA}$. Then we deposited Ba$\sub$0.5/Sr$\sub$0.5/TiO$_3$ thin film using RF Magnetron sputtering method on the MgO/Si substrate in various RF power of 25W, 50W, 75W. The film deposited in 50W showed the best crystalline from the XRD measurement. To know the electrical properties of the film, we manufactured Al/BSTMgO(300${\AA}$)/Si/Al structure capacitor. In the result of I-V measurement, The leakage current density of the capacitor was lower than 10$\^$-7/A/$\textrm{cm}^2$ at the range of ${\pm}$150kV/cm. From C-V characteristics of the capacitor, can calculate the dielectric constant and it was 305. Finally we deposited BST thin film on bare Si substrate and (100)MgO substrate in the same deposition condition. From the comparate of the properties of these samples, we found the properties of BST thin film which deposited on MgO/Si substrate were better than on bare Si substrate and similar to on MgO substrate.

  • PDF

TFT-LCDs 게이트 전극에 적용한 Cu(Mg) 합금 박막의 건식식각 (A Dry-patterned Cu(Mg) Alloy Film as a Gate Electrode in a Thin Film Transistor Liquid Crystal Displays (TFT- LCDs))

  • 양희정;이재갑
    • 한국재료학회지
    • /
    • 제14권1호
    • /
    • pp.46-51
    • /
    • 2004
  • The annealing of a Cu(4.5at.% Mg)/$SiO_2$/Si structure in ambient $O_2$, at 10 mTorr, and $300-500^{\circ}C$, allows for the outdiffusion of the Mg to the Cu surface, forming a thin MgO (15 nm) layer on the surface. The surface MgO layer was patterned, and successfully served as a hard mask, for the subsequent dry etching of the underlying Mg-depleted Cu films using an $O_2$ plasma and hexafluoroacetylacetone [H(hfac)] chemistry. The resultant MgO/Cu structure, with a taper slope of about $30^{\circ}C$ shows the feasibility of the dry etching of Cu(Mg) alloy films using a surface MgO mask scheme. A dry-etched Cu(4.5at.% Mg) gate a-Si:H TFT has a field effect mobility of 0.86 $\textrm{cm}^2$/Vs, a subthreshold swing of 1.08 V/dec, and a threshold voltage of 5.7 V. A novel process for the dry etching of Cu(Mg) alloy films, which eliminates the use of a hard mask, such as Ti, and results in a reduction in the process steps is reported for the first time in this work.

Al-9Si-0.3Mg 주조용 합금에서 Sludge 형성이 금형소착 반응층 두께에 미치는 영향 (Effect of Sludge Formation on the Thickness of Die Soldering Reaction Layer in Al-9Si-0.3Mg Casting Alloy)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제30권2호
    • /
    • pp.76-82
    • /
    • 2010
  • Effect of reaction time and sludge formation on the thickness of die soldering reaction layer has been studied in Al-9Si-0.3Mg casting alloy. Ternary ${\alpha}_{bcc}-Al_8Fe_2Si$ and ${\alpha}_{hcp}-Al_8Fe_2Si$ intermetallic compounds formed at the interface of SKD61 tool steel by interaction diffusion of Al, Fe and Si atoms after 0.5hr and 6hr immersion time, respectively. Binary ${\eta}-Fe_2Al_5$ additionally formed at the interface of SKD61 tool steel after 10hr immersion time. Thickness of soldering reaction layer in die surface increased as immersion time increased from 0.5hr to 24hr. Sludge formation was ascertained in the samples which were immersed in the melts more than 10hr. Reaction of die soldering after sludge formation was more accelerated than that of before sludge formation due to a decrease in Fe content, followed by higher diffusion rate of Al in the melt by sludge formation.

반응 조건에 따른 규산마그네슘의 입도 변화 및 폴리올 정제 능력평가 (Change of Particle Size of Magnesium Silicate According to Reaction Conditions and Evaluation of Its Polyol Purification Ability)

  • 유종렬;정홍인;강동균;박성호
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.84-91
    • /
    • 2020
  • 염기성 폴리올 및 식용유 정제에 사용하는 합성 규산마그네슘의 효율성은 정제능력과 여과속도를 통해 평가되며, 규산마그네슘의 입도 및 표면적에 따라 영향을 받는다. 본 연구에서는 합성변수인 반응온도, 주입속도, 주입순서(Si, Mg), Mg/Si의 반응몰비가 규산마그네슘의 입도에 미치는 영향을 조사하였다. 합성된 규산마그네슘은 합성공정, 분쇄공정, 정제공정으로 비교 분석되었다. 합성공정에서 반응 온도와 주입 속도는 규산마그네슘의 평균입도 변화에 영향을 주지않는 반면, Mg/Si의 반응몰비와 주입 순서는 평균입도 변화에 주된 요인으로 작용하였다. 합성 후 규산마그네슘의 평균입도는 반응몰비가 0.125에서 0.500로 증가할 때 Mg 주입 시 약 54.4 ㎛에서 63.1 ㎛로 약 8.7 ㎛ 증가하였고, Si 주입 시 47.3 ㎛에서 52.1 ㎛로 약 4.8 ㎛ 증가하였다. 주입 순서 별 평균입도를 비교해보면 Mg 주입 시 59.1 ㎛, Si 주입 시 48.4 ㎛로 약 10.7 ㎛의 평균입도 차이를 보였으며 Mg을 주입하는 조건에서 약 2배 빠른 수세여과속도가 관찰되었다. 즉, 입도가 증가함에 따라 여과 시간이 단축되고 수세여과속도 증가로 생산성 향상에 기여할 수 있었다. 여과 후 분리된 cake형태의 규산마그네슘은 건조과정을 통해 단단한 고형체가 되고 분쇄공정을 통해 분말형태의 흡착제로 사용된다. 건조된 규산마그네슘의 물리적 강도가 감소함에 따라 분말의 평균입도가 감소하고, 이 강도는 반응몰비에 영향을 받는 것을 확인하였다. Mg주입 시 Mg/Si의 반응몰비가 증가함에 따라 규산마그네슘의 물리적 강도가 감소하여 분쇄 후 평균입도가 합성 후 평균입도에 비해 약 40% 감소하는 것을 관찰하였다. 이러한 강도감소는 평균입도 감소와 분쇄 후 미분량의 증가로 정제능력의 향상을 가져왔지만 정제여과속도 감소를 가져왔다. Mg 주입 시 반응몰비가 0.125에서 0.5로 증가할 동안 정제능력은 약 1.3 배가 증가하였으나 정제여과속도는 약 1.5 배가 감소하였다. 따라서 규산마그네슘의 생산성 향상을 위해서는 Mg/Si의 반응몰비를 증가시켜야 하지만, 폴리올의 정제여과속도를 증가시키기 위해선 반응몰비를 감소시켜야 한다. 규산마그네슘의 합성변수 중 주입순서와 Mg/Si의 반응몰비는 합성 후 평균입도와 분쇄 후 평균입도 및 미분량 변화에 영향을 주는 주요인자로 생산성 및 정제능력을 결정짓는 중요한 합성변수이다.

Thermal properties of glass-ceramics made with zircon and diopside powders

  • Lee, Dayoung;Kang, Seunggu
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.504-508
    • /
    • 2018
  • Diopside is a ceramic material with excellent physical and chemical properties. However, when it is applied as an LED packaging material, heat dissipation of the LED element is not sufficient due to its relatively lower thermal conductivity, which may cause degradation of the LED function. In this study, glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system, in which diopside is the main crystal phase, were prepared by heat-treating the glass, which was composed of zircon ($ZrO_2-SiO_2$) powders and diopside ($CaO-MgO-2SiO_2$) powders. The possibility of using the glass-ceramics as a packaging material for LEDs was then investigated by analyzing the density, shrinkage, thermal conductivity, and phases generated according to the amount of zircon powder added. The density and shrinkage of specimens decreased slightly and then increased again with the amount of $ZrO_2-SiO_2$ added within a range of 0~0.38 mol. Even though the crystal phase of zircon does not appear in the $ZrO_2-CaO-MgO-SiO_2$ system, the glass containing 0.38 mol zircon powder showed the highest thermal conductivity, 1.85 W/mK, among the specimens fabricated in this study: this value was about 23% higher than that of pure diopside. It was found that the thermal conductivity of the glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system was closely related to the density, but not to the phase type. Zirconia ($ZrO_2$), a component oxide of zircon, plays an important role in increasing the density of the specimen. Furthermore the thermal conductivity of glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system showed a nearly linear relationship with thermal diffusivity.

Mg-Al-Si 합금에서 진동감쇠능의 변형진폭 의존성 (Strain Amplitude Dependence of Damping Capacity in Mg-AI-Si Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제24권3호
    • /
    • pp.144-148
    • /
    • 2011
  • Change in damping capacity with strain amplitude was studied in Mg-Al-Si alloy in as-cast, solution-treated and aged states, respectively. The as-cast microstructure of the alloy is characterized by eutectic ${\beta}$($Mg_{17}Al_{12}$) phase and Chinese script type $Mg_2Si$ particles. The solution treatment dissolved the ${\beta}$ phase into the matrix, while the aging treatment resulted in the distribution of continuous and discontinuous type ${\beta}$ precipitates. The solution-treated microstructure showed better damping capacity than as-cast and aged microstructures both in strain-dependent and strain-independent damping regions. The decrease in second-phase particles which weakens the strong pinning points on dislocations and distribution of solute atoms in the matrix, would be responsible for the enhanced damping capacity after solution treatment.