• Title/Summary/Keyword: $MetaPre-AI^{TM}$

Search Result 1, Processing Time 0.018 seconds

Prediction and Identification of Biochemical Pathway of Acteoside from Whole Genome Sequences of Abeliophyllum Distichum Nakai, Cultivar Ok Hwang 1ho (미선나무 품종 옥황 1호의 유전체를 활용한 Acteoside 생화학 합성과정 예측 및 확인)

  • Park, Jaeho;Xi, Hong;Han, Jiyun;Lee, Jeongmin;Kim, Yongsung;Lee, Jun-mi;Son, Janghyuk;Ahn, Joungjwa;Jang, Taewon;Choi, Jisoo;Park, Jongsun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.3
    • /
    • pp.76-91
    • /
    • 2020
  • Whole genome sequence of Abeliophyllum distichum Nakai (Oleaceae) cultivar Ok Hwang 1 Ho, which is Korean endemic species, was recently sequenced to understand its characteristics. Acteoside is one of major useful compounds presenting various activities, and its several proposed biochemical pathways were reviewed and integrated to make precise biochemical pathway. Utilizing MetaPre-AITM which was developed for predicting secondary metabolites based on whole genome with the precise biochemical pathway of acteoside and the InfoBoss Pathway Database, we successfully rescued all enzymes involved in this pathway from the genome sequences, presenting that A. distichum cultivar Ok Hwang 1 Ho may produce acteoside. High-performance liquid chromatography result displayed that callus of A. distichum cultivar Ok Hwang 1 Ho contained acteoside as well as isoacteoside which may be derived from acteoside. Taken together, we successfully showed that MetaPre-AITM can predict secondary metabolite from plant whole genomes. In addition, this method will be efficient to predict secondary metabolites of many plant species because DNA can be analyzed more stability than chemical compounds.