• Title/Summary/Keyword: $M_2C$ carbide

Search Result 238, Processing Time 0.027 seconds

SiC aggregates synthesized from carbonized rice husks, paper sludge, coffee grounds, and silica powder (탄화왕겨, 제지슬러지, 커피찌거기 및 실리카 혼합물로부터 탄화규소 결정체 합성)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • Relatively fine silicon carbide (SiC) crystalline aggregates have been synthesized with the carbonized rice husks, paper sludge, coffee grounds as the carbon sources and the silica powder. The main reaction source to obtain silicon carbide (SiC) aggregates from the mixture of carbon sources and silica was inferred as the gaseous silicon monoxide (SiO) phase, being created from this mixture through the carbothermal reduction reaction. The silicon carbide (SiC) crystalline aggregates, fabricated from the carbonized rice husks and paper sludge, coffee grounds and silica ($SiO_2$) powder, were investigated by XRD patterns, FE-SEM and FE-TEM images. In these specimens, obtained from the carbonized rice husks, paper sludge and silica, XRD patterns showed rather high strong peak of (111) plane near $35^{\circ}$. The FE-TEM images and patterns of specimens, synthesized from carbonized rice husks, paper sludge, coffee grounds and silica under Ar atmosphere, showed relatively fine particles under $1{\mu}m$ and crystalline peak (110) of silicon carbide (SiC) diffraction pattern.

Effects of High Temperature Deformation and Thermal Exposure on Carbide Reaction Cast Alloy 738LC (고원변형과 열간노출에 따른 주조용 합금 738LC의 탄화물 분해거동 고찰)

  • Ju, Dong-Won;Jo, Chang-Yong;Kim, Du-Hyeon;Seo, Seong-Mun;Lee, Yeong-Chan
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.111-116
    • /
    • 2000
  • Fracture mode and carbide reactions of cast alloy 738LC during thermal exposure and creep at 816$^{\circ}C$/440MPa and 982$^{\circ}C$/152MPa were investigated. Crystallographic transgranular failure was observed in the specimen crept at 816$^{\circ}C$ due to shearing on the slip plane. Because selective oxidation at the grainboundaries which was exposed at the surface leads reduction in surface energy, however, early initiation of crack at the grainboundaries and intergranular failure were observed in the specimen crept at 982$^{\circ}C$/152MPa. As a result of decomposition of MC carbide at the tested temperatures, M(sub)23C(sub)6 carbide precipitated either on the grainboundaries or on the deformation band. The applied stress enhanced decomposition of MC. $\sigma$phase nucleated from Cr(sub)23C(sub)6 then grew to the ${\gamma}$+${\gamma}$\\` matrix. Precipitation of $\sigma$was accelerated by increasing temperature and applied stress.

  • PDF

Reactioin Characteristics of the Sm2Fe17-xGax(x0, 2) Alloy with Hydrogen and Methane Gas

  • Shon, S.W;Kwon, H.W
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.123-127
    • /
    • 1999
  • The Ga-stabilised $Sm_2Fe_{17-}$type alloy can hardly be disproportionated under ordinary HDDR condition. The HDDR characteristics of Ga-substituted $Sm_2Fe_{17-}$type alloy were examined, and, in particular, the effect of particle size on the disproportionation of the Ga-substituted alloy was investigated in detail. The reaction characteristics of the $Sm_2Fe_{17-}$type alloys with or without Ga-substitution with methane (CH4) gas are also examined. The Ga-stabilised $Sm_2Fe_{17-}$type alloy was able to be disproportionated significantly on heating up to 80$0^{\circ}C$ under hydrogen with normal pressure. The particle size influenced significantly on the disproportion-ation of the Ga-substitute alloy, and the materials with finer particle size (<40 ${\mu}{\textrm}{m}$) was fully disproportionated on heating up to around 80$0^{\circ}C$ under hydrogen gas with normal pressure. The Ga-substituted alloy has a very sluggish recombination kinetics with respect to the alloy without Ga-substitution. The $Sm_2Fe_{17}C_{x-}$type carbide was stabilised significantly by the Ga-substitution for Fe in the parent alloy. While the $Sm_2Fe_{17}C_x$ was disproportionated below 80$0^{\circ}C$ the Ga-stabilised $Sm_2Fe_{14}Ga_2C_x$ carbide remained intact even on heating up to 80$0^{\circ}C$.

  • PDF

Microstructure and Corrosion Characteristics of Austenitic 304 Stainless Steel Subjected to Long-term Aging Heat Treatment (장시간 시효 열처리된 오스테나이트계 304강의 미세조직과 부식 특성)

  • Huh, ChaeEul;Kim, ChungSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.56-65
    • /
    • 2022
  • The electrochemical corrosion properties of austenitic AISI 304 steel subjected to a long-term-aging heat treatment were investigated. AISI 304 steel was aged at 700 ℃ for up to 10,000 h. The variation in the microstructure of the aged specimens was observed by optical microscopy and scanning electron microscopy. Electrochemical polarization experiments were performed to obtain the corrosion current density (Icorr) and corrosion potential (Ecorr). Analyses indicated that the metastable intermetallic carbide M23C6 formed near the γ/γ grain boundary and coarsened with increasing aging time; meanwhile, the δ-ferrite decomposed into the σ phase and into M23C6 carbide. As the aging time increased, the current density increased, but the corrosion potential of the austenitic specimen remained high (at least 0.04 ㎛/cm2). Because intergranular carbide was absent, the austenitic annealed specimen exhibited the highest pitting resistance. Consequently, the corrosion resistance of austenitic AISI 304 steel decreased as the aging heat treatment time increased.

Observation of Chip Shape and Tool Damage with Interrupted Cutting of Carbon Steel for Machine Structures(SM20C) (기계구조용 탄소강(SM20C)의 단속절삭시 칩의 형상 및 공구손상관찰)

  • Bae, Myung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.103-108
    • /
    • 2018
  • In interrupted cutting, the workpiece has a groove that impacts both the cutting tool and the workpiece. Therefore, cutting tool damage occurs rapidly. In this study, I performed interrupted cutting of carbon steel for machine structures (SM20C) using an uncoated carbide tool (SNMG120404, P20), and observed tool damage, cutting chip shape, and the workpiece surface. Results: Under the specific cutting conditions of feed rate = 0.066 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.1 mm; and feed rate = 0.105 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.2 mm, the observed tool damage was small. Similar chip shape was observed (Expt. No. 1, 3, 7). Workpiece damage was observed (Expt. No. 3, 5, 7, 9).

Effect of Grain Boundary Composition on Microstructure and Mechanical Properties of Silicon Carbide (입계상 조성이 탄화규소의 미세구조와 기계적 특성에 미치는 영향)

  • 김재연;김영욱;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.911-916
    • /
    • 1998
  • By using {{{{ { { {Y }_{3 }Al }_{5 }O }_{12 } }} (YAG) and SiO2 as sintering additives the effect of the composition of sintering ad-ditives on microstructure and mechanical properties of the hog-pressed and subsequently annealed SiC ma-terials were investigated. Microstructures of sintered and annealed materials were strongly dependent onthe composition of sintering additives. The average diameter and volume fraction of elongated grains in an-nealed materials increased with the SiO2/YAg ratio while the fracture toughness increased with the SiO2/YAg ratio. The average MPa.{{{{ { m}^{1/2 } }} respectively. Typical strength and fracture toughness of an annealed material with SiO2/YAg ra-tionof 0.67 were 371 MPa and 5.6 MPa.{{{{ { m}^{1/2 } }} respectively.

  • PDF

Effect of $\alpha$-Silicon Carbide Particle Size in Reaction Bonded Silicon Carbide ($\alpha$-SiC의 입도가 반응소결 탄화규소 소결체에 미치는 영향)

  • 한인섭;양준환;정헌생
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.583-587
    • /
    • 1989
  • Various $\alpha$-silicon carbied and colloidal graphite particles were sintered at 155$0^{\circ}C$ in vacuum atmosphere by reaction bonding sintering method, and the physical properties and microstructural analysis of specimen were investigated. With decreasing particle size, sintered density and 3-point bending strength of materials were increased and 3.2${\mu}{\textrm}{m}$ specimen showed high density and strength, 3.05g/㎤, 40kg/$\textrm{mm}^2$, respectively. The results of X-ray diffractometer and optical micrographs analysis showed that graphite and silicon melt reacted to convert to fine $\beta$-SiC particle and the body was changed to dense material.

  • PDF

Microstructural Characteristics of Rapidly Solidified Highly Alloyed High Speed Tool Steels (급속응고한 고합금 고속도 공구강의 미세조직 특성)

  • Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.242-251
    • /
    • 1995
  • Highly alloyed high speed tool steels(ASP steels) were rapidly solidified by melt spinning process, and the microstructures of melt spun tool steel ribbons were examined by optical microscopy and transmission electron microscopy with energy dispersive x-ray spectroscope. The microstructure of melt spun tool steel ribbon was found to be consisted of ${\delta}-ferrite$ cells surrounded by austenite and V-rich MC carbides. The size of ${\delta}-ferrite$ cells and intercellular MC carbides were about $0.4{\mu}m$ or less and 30nm or less, respectively. From the melt spun tool steel ribbons, only the MC type carbide phase was observed, instead of $M_2C$, $M_{23}C_6$ and $M_6C$ carbides which were generally observed in other rapidly solidified high speed steels. Such a change in type of carbide phase formed could be attributed to the increase in alloying content of vanadium and carbon. However, changes in microsturcture of melt spun tool steels with alloying content of cobalt, vanadium and carbon were not observed.

  • PDF

Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach

  • Chuan, M.W.;Wong, Y.B.;Hamzah, A.;Alias, N.E.;Sultan, S. Mohamed;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.213-221
    • /
    • 2022
  • Silicon carbide (SiC) is a binary carbon-silicon compound. In its two-dimensional form, monolayer SiC is composed of a monolayer carbon and silicon atoms constructed as a honeycomb lattice. SiC has recently been receiving increasing attention from researchers owing to its intriguing electronic properties. In this present work, SiC nanoribbons (SiCNRs) are modelled and simulated to obtain accurate electronic properties, which can further guide fabrication processes, through bandgap engineering. The primary objective of this work is to obtain the electronic properties of monolayer SiCNRs by applying numerical computation methods using nearest-neighbour tight-binding models. Hamiltonian operator discretization and approximation of plane wave are assumed for the models and simulation by applying the basis function. The computed electronic properties include the band structures and density of states of monolayer SiCNRs of varying width. Furthermore, the properties are compared with those of graphene nanoribbons. The bandgap of ASiCNR as a function of width are also benchmarked with published DFT-GW and DFT-GGA data. Our nearest neighbour tight-binding (NNTB) model predicted data closer to the calculations based on the standard DFT-GGA and underestimated the bandgap values projected from DFT-GW, which takes in account the exchange-correlation energy of many-body effects.

A Study on the Precipitation Behavior of Carbide Particle in L12-type Intermetallic Compound Ni3Al (L12형 금속간화합물 Ni3Al중에 탄화물입자의 석출거동에 관한 연구)

  • Han, Chang-Suk;Koo, Kyung-Wan;Oh, Dong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.241-247
    • /
    • 2006
  • Structural studies have been performed on precipitation hardening discovered in $L1_2-ordered\;Ni_3(Al,Cr)$ containing 0.2 to 3.0 mol% of carbon using transmission electron microscopy (TEM). Fine octahedral precipitates of $M_{23}C_6$ appeared in the matrix by aging at temperatures around 973 K after solution treatment at 1423 K. TEM examination revealed that the $M_{23}C_6$ phase and the matrix lattices have a cube-cube orientation relationship and keep partial atomic matching at the {111} interface. After prolonged aging or by aging at higher temperatures, the $M_{23}C_6$ precipitates then adopt a rod-like morphology elongated parallel to the <100> directions. Deformation at temperature below 973 K, typical Orowan loops were observed surrounding the $M_{23}C_6$ particles. At higher deformation temperatures, the Orowan loops disappeared and the morphology of dislocations at the particle-matrix interfaces suggested the existence of attractive interaction between dislocations and particles. The change of the interaction modes between dislocation and particles with increasing deformation temperature can be considered as a result of strain relaxation at the interface between matrix and particles.