• Title/Summary/Keyword: $M_2C$ carbide

Search Result 238, Processing Time 0.027 seconds

Effect of SiC whisker addition on microstructure and mechanical properties of silicon carbide (탄화규소 휘스커 첨가가 탄화규소의 미세구조와 기계적 특성에 미치는 영향)

  • Young-Wook Kim;Kyeong-Sik Cho;Heon-Jin Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.473-480
    • /
    • 1997
  • $\beta-SiC$powder with or without the addition of 1-3 wt% of $\beta-SiC$ whiskers (seeds) was hot-pressed at $1850^{\circ}C$ for 1 h using $Al_2O_3$ and $Y_2O_3$ as sintering aids. The hot-pressed materials were subsequently annealed at $1950^{\circ}C$ to enhance grain growth. The introduction of $\beta-SiC$ whiskers into $\beta-SiC$ does not affect the microstructure as well as mechanical properties significantly because the whiskers are not viable in the presence of liquid phase during hot-pressing. The strengths and fracture toughnesses of the hot-pressed and subsequently 5 h-annealed materials with 1 wt% $\beta-SiC$ whiskers and without $\beta-SiC$ whiskers were 465 MPa and 5.8 MPaㆍ$m^{1/2}$, and 451 MPa and 5.5 MPaㆍ$m^{1/2}$, respectively.

  • PDF

Effect of Temperature on the Deposition Rate and Bending Strength Characteristics of Chemical Vapor Deposited Silicon Carbide Using Methyltrichlorosilane (메틸트리클로로실란을 이용한 화학증착 탄화규소의 증착율 및 굽힘강도 특성에 미치는 온도의 영향)

  • Song, Jun-Baek;Im, Hangjoon;Kim, Young-Ju;Jung, Youn-Woong;Ryu, Hee-Beom;Lee, Ju-Ho
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The effects of deposition temperature on chemical vapor deposited silicon carbide (CVD-SiC) were studied to obtain high deposition rates and excellent bending strength characteristics. Silicon carbide prepared at $1250{\sim}1400^{\circ}C$ using methyltrichlorosilane(MTS : $CH_3SiCl_3$) by hot-wall CVD showed deposition rates of $95.7{\sim}117.2{\mu}m/hr$. The rate-limiting reaction showed the surface reaction at less than $1300^{\circ}C$, and the mass transfer dominant region at higher temperature. The activation energies calculated by Arrhenius plot were 11.26 kcal/mole and 4.47 kcal/mole, respectively. The surface morphology by the deposition temperature changed from $1250^{\circ}C$ pebble to $1300^{\circ}C$ facet structure and multi-facet structure at above $1350^{\circ}C$. The cross sectional microstructures were columnar at below $1300^{\circ}C$ and isometric at above $1350^{\circ}C$. The crystal phases were all identified as ${\beta}$-SiC, but (220) peak was observed from $1300^{\circ}C$ or higher at $1250^{\circ}C$ (111) and completely changed to (220) at $1400^{\circ}C$. The bending strength showed the maximum value at $1350^{\circ}C$ as densification increased at high temperatures and the microstructure changed from columnar to isometric. On the other hand, at $1400^{\circ}C$, the increasing of grain size and the direction of crystal growth were completely changed from (111) to (220), which is the closest packing face, so the bending strength value seems to have decreased.

Tool Wear of the Tungsten Carbide Tipped Circular Saw (초경팁 납접형 둥근톱의 공구 마멸)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-236
    • /
    • 2002
  • In this study, the carbon steels, SM20C were machined with the tungsten carbide tipped circular saw to clarify the cutting-off characteristics in terms of tool wear. The results show that an improved performance in view of both the tool wear and the cutting efficiency was obtained by using oil base cutting fluid at the cutting speed of 100m/min with the feed of 0.06mm/tooth. The rake angle of 10$^{\circ}$ , clearance angle of 8$^{\circ}$ , nose radius of R0.1mm, and end cutting edge champer of 0.1mm$\times$25$^{\circ}$ are believed as the best tool geometries. The tool wear decreases due to using the saw of the disk of STS5 and the tool material of P30.

Sintering Behavior and Mechanical Property of Transition Metal Carbide-Based Cermets by Spark Plasma Sintering (방전플라즈마 소결 공정 적용 전이금속 카바이드 서멧의 소결 및 기계적 특성)

  • Lee, Jeong-Han;Park, Hyun-Kuk;Hong, Sung-Kil
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.44-50
    • /
    • 2022
  • Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 ℃ (60 ℃min) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.

Crystal Growth of 3C-SiC Using HMDS Gas Source (HMDS 가스원을 이용한 3C-SiC의 결정성장)

  • Sun, Ju-Hun;Chung, Yun-Sik;Chung, Gwiy-Sang;Nishino, Shigehiro
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.735-738
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD method using HMDS(hexamethyildisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The heteroepitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra$(2{\theta}=41.5^{\circ})$.

  • PDF

Characterization of 3C-SiC grown on Si(100) water (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • Na, Kyung-Il;Chung, Yun-Sik;Ryu, Ji-Goo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern.

  • PDF

Characterization of 3C-SiC grown on Si(100) wafer (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • 나경일;정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of 4.3 $\mu\textrm{m}$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at 1350$^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was 4.3 $\mu\textrm{m}$/hr. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively The 3C-SiC distinct phonons of TO(transverse optical) near 796 cm$\^$-1/ and LO(longitudinal optical) near 974${\pm}$1 cm$\^$-1/ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra(2$\theta$=41.5$^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern

  • PDF

Crystal Characteristics of 3C-SiC Grown on Si(100) Wafers (Si(100)기판상에 성장된 3C-SiC의 결정 특성)

  • Chung, Yun-Sik;Ryu, Ji-Goo;Seon, Joo-Heon;Chung, Soo-Yong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.30-34
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) wafers up to a thickness of 4.3 ${\mu}m$ by APCVD method using HMDS(hexamethyldisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was 4.3 ${\mu}m$/hr. The 3C-SiC epitaxial films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near 796 $cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The heteroepitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$).

  • PDF

Change of Surface Characterisstics of Cemented Carbide by Nitriding (초경합금의 플라즈마 질화처리에 의한 표면물성 변화)

  • 김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.3
    • /
    • pp.167-174
    • /
    • 1997
  • WC-C0 base cemented carbides were plasma nitrided to obtain more hadened surface layer. The surface hardness of Hv1338 which is higher than a non-treated ane by 30%, and the hardened layer thickness of about 50$\mu\textrm{m}$ were obtained by the treatment of 3hrs under the conditions of $550^{\circ}C$, and 5torr of gas pressure of which composition was 1:1 of $N_2:H_2$. The nitrided surfaces has WIN and W2N phases in the non-coated samples and AIN phase in the alumina coated sampled as the results of X-ray results, and showed surface roughnness of 5$\mu\textrm{m}$ which were caused by the sputtering action of the plasma gasee. The hardenened layer exihibits an enhanced wear resistance the cuttability test.

  • PDF

The Effect of Sintering Parameters on the Densification Behavior of PM High Speed Steel (분말 고속도공구강의 소결 조건에 따른 치밀화 거동연구)

  • 김용진
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.190-197
    • /
    • 1994
  • The densification behavior during a sintering of M2 and T15 grade high speed steel powder compacts was reported. Sintered densities over 98% theoretical were achieved by a liquid phase sintering in vacuum for both grades. The optimum sintering temperature range where full densification could be achieved without excessive carbide coarsening and incipient melting was much narrower in M2 than in T15 grade. The sintering response was mainly affected by the type of carbides present. The primary carbides in M2 were identified as $M_6C$ type whereas those in T15 were MC type which provides wider sintering range. The addition of elemental carbon up to 0.3% lowered the optimum sintering temperature for both grades, but had little effect on expanding the sintering range and sintered structure.

  • PDF