• Title/Summary/Keyword: $MLS_B$

Search Result 44, Processing Time 0.022 seconds

Deletion of N-terminal End Region of ErmSF Leads to an Amino Acid Having Important Role in Methyl Transfer Reaction (ErmSF에서 특이적으로 발견되는 N-terminal End Region의 점차적인 제거에 의한 활성에 중요한 아미노산의 규명)

  • Lee Hak Jin;Jin Hyung Jong
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.257-262
    • /
    • 2004
  • ErmSF is one of the ERM proteins which transfer the methyl group to A2058 in 23S rRNA to confer the resis­tance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism. Unlike other ERM pro­teins, ErmSF contains long N-terminal end region (NTER), of which $25\%$ is composed of arginine that is known to interact with RNA well. Gradual deletion of NTER leaded us to the point where mutant protein lost much of activity in vivo. Overexpressed and purified mutant protein showed much reduced activity in vitro: $2\%$ activity relative to that of wild type protein. This fact suggests that this amino acid interact with RNA close to meth­ylatable adenine to locate it at an active site properly.

In vitro activity comparison of Erm proteins from Firmicutes and Actinobacteria (Firmicutes와 Actinobacteria에 속하는 세균들의 Erm 단백질 in vitro 활성 비교)

  • Jin, Hyung Jong
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.269-277
    • /
    • 2016
  • Erm proteins methylate the specific adenine residue ($A_{2058}$, E. coli numbering) on 23S rRNA to confer the $MLS_B$ (macrolidelincosamide-streptogramin B) antibiotic resistance on a variety of microorganisms ranging from antibiotic producers to pathogens. When phylogenetic tree is constructed, two main clusters come out forming each cluster of Actinobacteria and Firmicutes. Two representative Erm proteins from each cluster were selected and their in vitro methylation activities were compared. ErmS and ErmE from Actinobacteria cluster exhibited much higher activities than ErmB and ErmC' from Firmicutes: 9 fold difference when ErmC' and ErmE were compared and 13 fold between ErmS and ErmB. Most of the difference was observed and presumed to be caused by N-terminal and C-terminal extra region from ErmS and ErmE, respectively because NT59TE in which N-terminal end 59 amino acids was truncated from wild type ErmS exhibited only 22.5% of wild type ErmS activity. Meanwhile, even NT59TE showed three and 2.2 times more activity when it was compared to ErmB and C, respectively, suggesting core region from antibiotic producers contains extra structure enabling higher activity. This is suggested to be possible through the extra region of 197RWS199 (from both ErmS and ErmE), 261GVGGSLY267 (from ErmS), and 261GVGGNIQ267 (from ErmE) and 291SVV293 (from ErmS) and 291GAV293 (from ErmE) by multiple sequence alignment.

Analysis of Airflow Characteristics in an Enclosed Nursery Pig House (무창자돈사의 공기유동 특성 분석)

  • Song, Jun-Ik;Choi, H.L.;Yang, C.B.;Kim, H.T.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.107-114
    • /
    • 2005
  • Experiments were carried out to evaluate the air speed distribution of an enclosed nursery pig bay in summer and winter. The data taken by experiments were compared to validate with the calculated air speeds by a commercial CFD code, FLUENT. Air basically enters into the bay through perforated circular ducts overhanged on the ceiling, leaves through a exhaust fan attached on the end-wall of the bay. Air speeds were measured as 2 ${\sim}$ 2.5 mls at the perforated holes in the duct in winter and 7 mls in summer. The validation showed that a CFD simulaton is one of feasible methods to predict airspeed distribution in the nursery pig bay.

Site-directed Mutagenesis Analysis Elucidates the Role of 223/227 Arginine in 23S rRNA Methylation, Which Is in 'Target Adenine Binding Loop' Region of ErmSF (위치 지정 치환 변이를 이용한 ErmSF의 '타깃 Adenine Binding Loop'을 형성하는 부위에 존재하는 223/227 Arginine 잔기의 23S rRNA Methylation 활성에서의 역할 규명)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.79-86
    • /
    • 2012
  • ErmSF is one of the Erm family proteins which catalyze S-adenosyl-$_L$-methionine dependent modification of a specific adenine residue (A2058, E. coli numbering) in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B ($MLS_B$) antibiotics. $^{222}FXPXPXVXS^{230}$ (ErmSF numbering) sequence appears to be a consensus sequence among the Erm family. This sequence was supposed to be involved in direct interaction with the target adenine from the structural studies of Erm protein ErmC'. But in DNA methyltarnsferase M. Taq I, this interaction have been identified biochemically and from the complex structure with substrate. Arginine 223 and 227 in this sequence are not conserved among Erm proteins, but because of the basic nature of residues, it was expected to interact with RNA substrates. Two amino acid residues were replaced with Ala by site-directed mutagenesis. Two mutant proteins still maintained its activity in vivo and resistant to the antibiotic erythromycin. Compared to the wild-type ErmSF, R223A and R227A proteins retained about 50% and 88% of activity in vitro, respectively. Even though those arginine residues are not essential in the catalytic step, with their positive charge they may play an important role for RNA binding.

FINITE ELEMENT MODELING AND PARAMETER STUDY OF HALF-BEAD OF MLS CYLINDER HEAD GASKET

  • CHO S. S.;HAN B. K.;LEE J. H.;CHANG H.;KIM B. K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.109-114
    • /
    • 2006
  • Half-beads of multi-layer-steel cylinder head gaskets take charge of sealing of lubrication oil and coolant between the cylinder head and the block. Since the head lifts off periodically due to the combustion gas pressure, both the dynamic sealing performance and the fatigue durability are essential for the gasket. A finite element model of the halfbead has been developed and verified with experimental data. The half-bead forming process was included in the model to consider the residual stress effects. The model is employed to assess the dependence of the sealing performance and the fatigue durability on the design parameters of half-bead such as the width and height of bead and the flat region length. The assessment results show that the sealing performance can be enhanced without significant deterioration of the fatigue durability in a certain range of the half-bead width. In the other cases the improvement of sealing performance is accompanied by the loss of the fatigue durability. Among three parameters, the bead width has the strongest influence.

A Comparative Study of the Detectable Methods of Residual Antibiotics in Milk (우유중 잔류 항생물질 분서방법에 관한 비교연구)

  • 백선영;김형일;박건상;김소희;권경란
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.2
    • /
    • pp.129-132
    • /
    • 1996
  • Recently, as concern about the residual antibiotics in milk increase, the detection methods of residual antibiotics used extensevely at the present time were investigated and compared to their properties and the detection limits of variable antibiotics. At first, comparactive tests of the detectable sensitivity of 4 test organisms, B. cereus, B. subtilis, M.luteus, B.stearothermophilus C-953, were performed by disc assay. As a result, B.stearothermophilus was the most sensitive strain of all other strains and showe the detect limit of 5-50 ppb for penlicillins (PCs). And also, B.subitilis was showed the more effective detection limit, 200-400 ppb, for aminoglycosides (AGs) and M.luteus was showed predominant sensitivity , 50-500 ppb for macrolides(MLs) and B.cereus was the most sensitive strain for tetracyclines (TCs) and showed the detection limit of 100-400 ppb. Therefore, each test strains were showed a different sensitivity in the detection of the different antibiotic families. When the detection limit of disc assay and other methods were compared, TTCmethod was less sensitive than other methods showing 5-50 ppb detectable lebel for PCs. Also, for the detection of other antibiotic families TTC method was showed the worst sensitivity and Delvo and Charm Farm tests were similar to the detectable properties of AGs and MLs. Although disc assay was showed the similar detection limit for PCs with Delvo and Charm Farm, it was more widely effective for the detection of kanamycin, erythromycin, chlortetracycline, doxycycline, verginiamycin and so on than Delvo or Charm Farm. CharmII test was showed the best sensitivity for the most of antibiotics except neomycin and gentamycin. But it was necessary that different tests must be performed to each antibiotic family and so it was regarded that the effectiveness of that method was low.

  • PDF

Air-gap Disturbance Attenuation of Magnetic Levitation Systems using Discrete Kalman Filter (이산형 칼만필터를 이용한 자기부상시스템의 공극외란 감쇄)

  • 성호경;정병수;장석명
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.444-451
    • /
    • 2004
  • Conventional magnetic levitation systems could show unsatisfactory performance under air-gap disturbance due to rail irregularities. In this paper, we propose a feedback control system with discrete Kalman filter for air-gap disturbance attenuation. It is shown that excellent system performance can be obtained with the use of discrete Kalman filter, and that results from experiments agree well with those of simulations.

Cloning of tlrD, 23S rRNA Monomethyltransferase Gene, Overexpression in Eschepichia coli and Its Activity (235 rRNA Monomethyltransferase인 tlrD의 클로닝, 이의 대장균에서 대량생산과 활성 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.166-172
    • /
    • 2007
  • ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confer the antibiotic resistance on micro-organisms ranging from antibiotic producers to pathogens and are classified into monomethyltransferase and dimethyltransferase. To investigate the differences between mono- and dimethyltransferase, tirD, a representative monomethylase gene was cloned in Escherichia coli from Streptomyces fradiae which contains ermSF, dimethylase gene as well to overexpress the TlrD for the first time. T7 promoter driven expression system successfully overexpress tlrD as a insoluble aggregate at $37^{\circ}C$ accumulating to around 55% of the total cell protein but unlike ErmSF, culturing at temperature as low as $18^{\circ}C$ did not make insoluble aggregate of protein into soluble protein. Coexpression of Thioredoxin and GroESL, chaperone was not helpful in turning into soluble protein either as in case of ErmSF. These results might suggest that differences between mono- and dimethylase could be investigated on the basis of the characteristics of protein structure. However, a very small amount of soluble protein which could not be detected by SDS-PAGE conferred antibiotic resistance on E. coli as in ErmSF which was expected from the activity exerted by monmethylase in a cell.

Functional Role of $^{60}RR^{61}$ in 23S rRNA Methylation, Which is in N-Terminal End Region of ErmSF (ErmSF의 N-Terminal End Region에 존재하는 $^{60}RR^{61}$의 23S rRNA Methylation에서의 역할)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.193-198
    • /
    • 2008
  • ErmSF is one of the proteins which are produced by Streptomyces fradiae to avoid suicide by its autogenous macrolide antibiotic, tylosin and one of ERM proteins which are responsible for transferring the methyl group to $A_{2058}$ (Escherichia coli coordinate) in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confers the antibiotic resistance on microorganisms ranging from antibiotic producers to pathogens. ErmSF contains an extra N-terminal end region (NTER), which is unique to ErmSF and 25% of amino acids of which is arginine known well to interact with RNA. Noticeably, arginine is concentrated in $^{58}RARR^{61}$ and functional role of each arginine in this motif was investigated through deletion and site-directed mutagenesis and the activity of mutant proteins in cell R60 and R61 was found to play an important role in enzyme activity through the study with deletion mutant up to R60 and R61. With the site-directed mutagenesis using deletion mutant of 1 to 59 (R60A, R61A, and RR60, 61AA), R60 was found more important than R61 but R61 was necessary for the proper activity of R60 and vice versa. And these amino acids were presumed to assume a secondary structure of $\alpha$-helix.