• 제목/요약/키워드: $MAPK/NF-{\kappa}B$ pathways

검색결과 113건 처리시간 0.02초

Mycobacterial Heparin-binding Hemagglutinin Antigen Activates Inflammatory Responses through PI3-K/Akt, NF-${\kappa}B$, and MAPK Pathways

  • Kim, Ki-Hye;Yang, Chul-Su;Shin, A-Rum;Jeon, So-Ra;Park, Jeong-Kyu;Kim, Hwa-Jung;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • 제11권2호
    • /
    • pp.123-133
    • /
    • 2011
  • Background: Mycobacterium tuberculosis (Mtb) heparin binding hemagglutinin (HBHA) is an Ag known to evoke effective host immune responses during tuberculosis infection. However, the molecular basis of the host immune response to HBHA has not been fully characterized. In this study, we examined the molecular mechanisms by which HBHA can induce the expression of proinflammatory cytokines in macrophages. Methods: HBHA-induced mRNA and protein levels of proinflammatory cytokines were determined in bone marrow-derived macrophages (BMDMs) using RT-PCR and ELISA analysis. The roles of intracellular signaling pathways for NF-${\kappa}B$, PI3-K/Akt, and MAPKs were investigated in macrophage proinflammatory responses after stimulation with HBHA. Results: HBHA robustly activated the expression of mRNA and protein of both TNF-${\alpha}$ and IL-6, and induced phosphorylation of NF-${\kappa}B$, Akt, and MAPKs in BMDMs. Both TNF-${\alpha}$ and IL-6 production by HBHA was regulated by the NF-${\kappa}B$, PI3-K, and MAPK pathways. Furthermore, PI3-K activity was required for the HBHA-induced activation of ERK1/2 and p38 MAPK, but not JNK, pathways. Conclusion: These data suggest that mycobacterial HBHA significantly induces proinflammatory responses through crosstalk between the PI3-K and MAPK pathways in macrophages.

p38 MAPK and $NF-_{\kappa}B$ are Required for LPS-Induced RANTES Production in Immortalized Murine Microglia (BV-2)

  • Jang, Sae-Byeol;Lee, Kweon-Haeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.339-346
    • /
    • 2000
  • Using murine immortalized microglial cells (BV-2), we examined the regulation of RANTES production stimulated by lipopolysaccharide (LPS), focusing on the role of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B.$ The result showed that RANTES (regulated upon activation of normal T cell expressed and secreted) was induced at the mRNA and protein levels in a dose- and time-dependent manner in response to LPS. From investigations of second messenger pathways involved in regulating the secretion of RANTES, we found that LPS induced phosphorylation of extracellular signal-regulated kinase (Erk), p38 MAPK and c-Jun-N-terminal kinase (JNK), and activated $(NF)-{\kappa}B.$ To determine whether this MAPK phosphorylation is involved in LPS-stimulated RANTES production, we used specific inhibitors for p38 MAPK and Erk, SB 203580 and PD 98059, respectively. LPS-induced RANTES production was reduced approximately 80% at $25\;{\mu}M$ of SB 203580 treatment. But PD 98059 did not affect RANTES production. Pyrrolidine-dithiocarbamate (PDTC), $(NF)-{\kappa}B$ inhibitor, reduced RANTES secretion. These results suggest that LPS-induced RANTES production in microglial cells (BV-2) is mainly mediated by the coordination of p38 MAPK and $(NF)-{\kappa}B$ cascade.

  • PDF

Fucosyltransferase IV Enhances Expression of MMP-12 Stimulated by EGF via the ERK1/2, p38 and NF-kB Pathways in A431Cells

  • Yang, Xue-Song;Liu, Shui-Ai;Liu, Ji-Wei;Yan, Qiu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1657-1662
    • /
    • 2012
  • Fucosyltransferase IV (FUT4) has been implicated in cell adhesion, motility, and tumor progression in human epidermoid carcinoma A431 cells. We previously reported that it promotes cell proliferation through the ERK/MAPK and PI3K/Akt signaling pathways; however, the molecular mechanisms underlying FUT4-induced cell invasion remain unknown. In this study we determined the effect of FUT4 on expression of matrix metalloproteinase (MMP)-12 induced by EGF in A431 cells. Treatment with EGF resulted in an alteration of cell morphology and induced an increase in the expression of MMP-12. EGF induced nuclear translocation of nuclear factor kB (NF-${\kappa}B$) and resulted in phosphorylation of $IkB{\alpha}$ in a time-dependent manner. In addition, ERK1/2 and p38 MAPK were shown to play a crucial role in mediating EGF-induced NF-${\kappa}B$ translocation and phosphorylation of $I{\kappa}B{\alpha}$ when treated with the MAPK inhibitors, PD98059 and SB203580, which resulted in increased MMP-12 expression. Importantly, we showed that FUT4 up-regulated EGF-induced MMP-12 expression by promoting the phosphorylation of ERK1/2 and p38 MAPK, thereby inducing phosphorylation/degradation of $I{\kappa}B{\alpha}$, NF-${\kappa}B$ activation. Base on our data, we propose that FUT4 up-regulates expression of MMP-12 via a MAPK-NF-${\kappa}B$-dependent mechanism.

Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • 제24권1호
    • /
    • pp.13-20
    • /
    • 2018
  • Estragole is a naturally occurring phenylpropanoid obtained from essential oils found in a broad diversity of plants. Although the phenylpropanoids show many biological activities, clear regulation of the inflammatory signaling pathways has not yet been determined. Here, we scrutinized the anti-inflammatory effect of estragole. The anti-inflammatory effect of estragole was determined through the inhibitory mechanisms of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), and mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Estragole significantly inhibited NO production, iNOS and COX-2 expression as well as LPS-induced $NF-{\kappa}B$ and MAPK activation. Furthermore, estragole suppressed LPS-induced intracellular ROS production but up-regulated the stress response gene HO-1 via the activation of transcription factor Nrf-2. These findings demonstrate that estragole inhibits the LPS-induced expression of inflammatory mediators via the down-regulation of iNOS, COX-2, $NF-{\kappa}B$, and MAPK pathways, as well as the up-regulation of the Nrf-2/HO-1 pathway, indicating that this phenylpropanoid has potential therapeutic and preventive applications in various inflammatory diseases.

Protective effects of curcumin against methotrexate-induced testicular damage in rats by suppression of the p38-MAPK and nuclear factor-kappa B pathways

  • Kilinc, Leyla;Uz, Yesim Hulya
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권3호
    • /
    • pp.211-220
    • /
    • 2021
  • Objective: The present study aimed to investigate the possibility that curcumin (CMN) protects against methotrexate (MTX)-induced testicular damage by affecting the phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Methods: Eighteen male Wistar albino rats were randomly divided into three groups. The control group was given an intragastric administration of dimethyl sulfoxide (DMSO) daily for 14 days, the MTX group was given a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day, and the MTX+CMN group was given intragastric CMN (100 mg/kg/day, dissolved in DMSO) for 14 days and a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day. At the end of the experiment, all animals were sacrificed and the testicular tissues were removed for morphometry, histology, and immunohistochemistry. Body and testicular weights were measured. Results: Body weights, seminiferous tubule diameter, and germinal epithelium height significantly decreased in the MTX group compared to the control group. Whereas, the number of histologically damaged seminiferous tubules and interstitial space width significantly increased in the MTX group. In addition, the number of p-p38 MAPK immunopositive cells and the immunoreactivity of NF-κB also increased in the MTX group compared to the control group. CMN improved loss of body weight, morphometric values, and histological damage due to MTX. CMN also reduced the number of p-p38 MAPK immunopositive cells and the NF-κB immunoreactivity. Conclusion: CMN may reduce MTX-induced testicular damage by suppressing the p38 MAPK and NF-κB signaling pathways.

Nypa fruticans Wurmb Exerts Anti-Inflammatory Effects through NF-kB and MAPK Signaling Pathway

  • Hye-Jeong Park;So-Yeon Han;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.56-56
    • /
    • 2021
  • Nypa fruticans Wurmb is a mangrove plant belonging to Araceae family. N. fruticans is typically found in Southeast Asia, and in some parts of Queensland, Australia. N. fruticans has phytochemicals, phenolics, and flavonoids. In this study, we investigated the anti-inflammatory effects of the ethyl acetate fraction of N. fruticans (ENF) on the production and expression of cytokines and inflammatory mediators through the major signal transduction pathways. ENF attenuated the level of cytokines in a dose-dependent manner and decreased the production of nitric oxide (NO). ENF decreased the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) via alleviating transcription of nuclear factor-kappa B (NF-κB) by an inhibitor of nuclear factor-kappa B (IκB) degradation. Furthermore, mitogen-activated protein kinase (MAPK) signaling pathways (ERK1/2, JNK1/2, and p38) are known to be involved in the inflammatory response. Phosphorylations of ERK1/2, JNK1/2, and p38 were significantly decreased compared with the ENF-untreated control. Conclusively, ENF was related to alleviating various pro-inflammatory mediators through IκB/NF-κB and MAPK signaling pathways, including p65 translocation to the nucleus.

  • PDF

Blockade of p38 Mitogen-activated Protein Kinase Pathway Inhibits Interleukin-6 Release and Expression in Primary Neonatal Cardiomyocytes

  • Chae, Han-Jung;Kim, Hyun-Ki;Lee, Wan-Ku;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권6호
    • /
    • pp.319-325
    • /
    • 2002
  • The induction of interleukin-6 (IL-6) using combined proinflammatory agents $(LPS/IFN-{\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ was studied in relation to p38 mitogen-activated protein kinase (MAPK) and $NF-{\kappa}B$ transcriptional factor in primary neonatal cardiomyocytes. When added to cultures of cardiomyocytes, the combined agents $(LPS/IFN-[\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ had stimulatory effect on the production of IL-6 and the elevation was significantly reduced by SB203580, a specific p38 MAPK inhibitor. SB203580 inhibited protein production and gene expression of IL-6 in a concentration-dependent manner. In this study, $IFN-{\gamma}$ enhancement of $TNF-{\alpha}-induced\;NF-{\kappa}B$ binding affinity as well as p38 MAP kinase activation was observed. However, a specific inhibitor of p38 MAPK, SB203580, had no effect on $TNF-{\alpha}/IFN-{\gamma}\;or\;LPS/IFN-{\gamma}-induced\;NF-{\kappa}B$ activation. This study strongly suggests that these pathways about $TNF-{\alpha}/IFN-{\gamma}$ or $LPS/IFN-{\gamma}-activated$ IL-6 release can be primarily dissociated in primary neonatal cardiomyocytes.

Immune Enhancement Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways on RAW 264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-shik;You, SangGuan;Lee, Hyungjae;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.349-356
    • /
    • 2018
  • Asterias amurensis is a marine organism that causes damage to the fishing industry worldwide; however, it has been considered a promising source of functional components. The present study aimed to investigate the immune-enhancing effects of fatty acids from three organs of A. amurensis on murine macrophages (RAW 264.7 cells). A. amurensis fatty acids boosted production of immune-associated factors such as nitric oxide (NO) and prostaglandin E2 in RAW 264.7 cells. A. amurensis fatty acids also enhanced the expression of critical immune-associated genes, including iNOS, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6, as well as COX-2. Western blotting showed that A. amurensis fatty acids stimulated the $NF-{\kappa}B$ and MAPK pathways by phosphorylation of $NF-{\kappa}B$ p-65, p38, ERK1/2, and JNK. A. amurensis fatty acids from different tissues resulted in different levels of $NF-{\kappa}B$ and MAPK phosphorylation in RAW 264.7 cells. The results increase our understanding of how A. amurensis fatty acids boost immunity in a physiological system, as a potential functional material.

Tetrabromobisphenol A Induces MMP-9 Expression via NADPH Oxidase and the activation of ROS, MAPK, and Akt Pathways in Human Breast Cancer MCF-7 Cells

  • Lee, Gi Ho;Jin, Sun Woo;Kim, Se Jong;Pham, Thi Hoa;Choi, Jae Ho;Jeong, Hye Gwang
    • Toxicological Research
    • /
    • 제35권1호
    • /
    • pp.93-101
    • /
    • 2019
  • Tetrabromobisphenol A (TBBPA), the most common industrial brominated flame retardant, acts as a cytotoxic, neurotoxic, and immunotoxicant, causing inflammation and tumors. However, the mechanism of TBBPA-induced matrix metalloproteinase-9 (MMP-9) expression in human breast cancer cells is not clear. In human breast cancer MCF-7 cells, treatment with TBBPA significantly induced the expression and promoter activity of MMP-9. Transient transfection with MMP-9 mutation promoter constructs verified that $NF-{\kappa}B$ and AP-1 response elements are responsible for the effects of TBBPA. Furthermore, TBBPA-induced MMP-9 expression was mediated by $NF-{\kappa}B$ and AP-1 transcription activation as a result of the phosphorylation of the Akt and MAPK signaling pathways. Moreover, TBBPA-induced activation of Akt/MAPK pathways and MMP-9 expression were attenuated by a specific NADPH oxidase inhibitor, and the ROS scavenger. These results suggest that TBBPA can induce cancer cell metastasis by releasing MMP-9 via ROS-dependent MAPK, and Akt pathways in MCF-7 cells.

Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Nutrition Research and Practice
    • /
    • 제10권3호
    • /
    • pp.251-258
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS: Pro-inflammatory cytokines including tumor necrosis factor-${\alpha}$ and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B ($NF-{\kappa}B$), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS: Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-${\alpha}$, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and $NF-{\kappa}B$ transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced $NF-{\kappa}B$ and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION: These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, $NF-{\kappa}B$, and MAPKs pathways.