• Title/Summary/Keyword: $M{\ddot{o}}ssbauer$ 효과

Search Result 14, Processing Time 0.023 seconds

Magnetic and CMR Properties of Sulphospinel ZnxFe1-xCr2S4 (Spinel계 유화물 ZnxFe1-xCr2S4의 CMR 특성과 자기적 성질)

  • Park, Jae-Yun;Bak, Yong-Hwan;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.137-141
    • /
    • 2005
  • The CMR properties and magnetic properties of sulphospinels $Zn_xFe_{1-x}Cr_2S_4$ have been explored by X-ray diffraction, magnetoresistance measurement, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures in the range of x=0.05, 0.1, 0.2 are cubic at room temperature. Magnetoresistance measurement indicates that these system is semiconducting below about 160 K. The temperature of maximum magnetoresistance is almost consistent with Curie temperature. The Zn substitutions for Fe occur to increase the Jahn-Teller relaxation and the electric quadrupole shift. CMR properties could be explained with Jahn-Teller effect, and half-metallic electronic structure, which is different from both the double exchange interactions of manganite La-Ca-Mn-O system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

Mössbauer Study on the Variation in Magnetic Properties of CuO Induced by 57Fe Addition (57Fe 이온이 CuO에 미치는 효과에 관한 Mössbauer 분광 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.113-119
    • /
    • 2009
  • $^{57}Fe_xCu_{1-x}O$(x = 0.0, 0.02) powders were prepared by sol-gel method and their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy (MS). The crystal structure of the samples is found to be monoclinic without any secondary phases and their lattice parameters increase with increasing annealing temperature ($T_A$), which is attributed to an increase in oxygen-vacancy content. MS measurements at room temperature indicate that $Fe^{3+}$ ions substitute $Cu^{2+}$ sites and ferromagnetic phase grow with increasing $T_A$. Magnetic hyperfine and quadrupole interactions of $^{57}Fe_{0.02}Cu_{0.98}O$ ($T_A=500^{\circ}C$) in the antiferromagnetic state at 17 K have been studied, yielding the following results: $H_{hf}=426.94\;kOe$, ${\Delta}E_Q=-3.67\;mm/s$, I.S.=0.32 mm/s, ${\theta}=65^{\circ}$, ${\phi}=0^{\circ}$, and ${\eta}=0.6$.

[Mössbauer] Spectroscopic Study of La1/3Sr2/3FeO2.96 under the External Magnetic Field (산소결핍 페롭스카이트 La1/3Sr2/3FeO2.96의 외부 자기장 하에서의 Mössbauer분광학적 연구)

  • Yoon, Sung-Hyun;Jung, Jong-Yong
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.81-84
    • /
    • 2005
  • The origin for the charge disproportionation (CD) transition in polycrystalline $La_{1/3}Sr_{2/3}FeO_{2.96}$ was examined using X-ray diffraction and the external field $M\ddot{o}ssbauer$ssbauer spectroscopy. In order to see how the external magnetic field affects the CD state above its transition temperature, an external magnetic field of up to 6 T was applied either parallel or perpendicular to the $\gamma-ray$ direction with the sample temperature fixed at 225 K, which was above the CD transition temperature. Without an external magnetic field, a completely paramagnetic singlet was obtained in the temperature range of the averaged valence state above the transition temperature, which was interpreted as coming from the average valence $Fe^{3.6+}$. In the longitudinal geometry, a magnetic Zeeman with its intensity ratio 3:0:1:1:0:3 is superimposed to the central singlet. In the transverse geometry, however, the central singlet disappears and only a magnetic component with its intensity ratio 3:4:1:1:4:3 emerges. The existence of a singlet is understood as an evidence of the fast electron-transfer among Fe ions. Since the singlet still exists under the magnetic field, the application of an external field has little effect on the conduction mechanism of hopping electrons.

Mössbauer Effect on LiFePO4 by Changing the Sintering Temperature and as Charged Cathode in Lithium Ion Battery (소결온도 변화와 충전된 리튬이온 전지 LiFePO4 정극에 대한 뫼스바우어 효과)

  • Kim, T.H.;Kim, H.S.;Im, H.S.;Yu, Y.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2007
  • In this paper, we composed the $LiFePO_4$ for the reversible use as the replacement material of the Li ion batteries and confirmed the good quality of the structure of the samples with the sintering temperature $675^{\circ}C,\;750^{\circ}C,\;and\;800^{\circ}C$ for 30 hours at nitrogen atmosphere. We also investigated the size of the particles through SEM picture and the change of the sintering temperature and the $Fe^{+3}$ content after charging the materials with 1 V, 160 mA and 3 V, 40 mA for 3 hours by Mossbauer spectroscopy. Also we can observe the increase on the $Fe^{+3}$ content at the charge condition and the increase of the amount ratio of the $Fe^{+3}$ ion only in sintering temperature $675^{\circ}C$ according to the increase of the electric charge. We cannot observe the change of the $Fe^{+3}$ ion in sintering temperature $800^{\circ}C$ after charging.