• Title/Summary/Keyword: $Li_2O$

Search Result 2,584, Processing Time 0.031 seconds

Synthesis and Electrochemical Characteristics of Li4Ti5O12 Nanofibers by Hydrothermal Method (수열법에 의한 Li4Ti5O12 Nanofibers 합성 및 전기화학적 특성에 관한 연구)

  • Kim, Eun-Kyung;Choi, Byung-Hyun;Jee, Mi-Jung;Kwon, Yong-Jin;Seo, Han;Kim, Young-Jun;Kim, Kwang-Bum
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.627-632
    • /
    • 2010
  • In this paper the effect of the structure, particle size, morphology of nanofibers and nanoparticles for the electrochemical characteristics of $Li_4Ti_5O_{12}$ was investigated. The $H_2Ti_2O_5{\cdot}H_2O$ synthesized in hydrothermal treatment from a NaOH treatment on $TiO_2$ by ion exchange processing with HCl solutions. After the $Li_4Ti_5O_{12}$ nanofibers synthesized in hydrothermal treatment of $H_2Ti_2O_5{\cdot}H_2O$ and $LiOH{\cdot}H_2O$. The hydrogen titanate precursor prepared by ion exchange processing with 0.1~0.3M HCl solutions and the final products calcined at $350^{\circ}C{\sim}400^{\circ}C$. The $Li_4Ti_5O_{12}$ nanofibers showed well reversibility during the insertion and extraction of Li, good cycle performance, high capacity and low electrochemical reaction resistance than nanoparticles. also c-rate exhibited a discharge capacity of 172 mAh/g at 0.2C and 115mAh/g at 5C, which is the 77%, 67% of that obtained in the process charged, discharged at 0.2C.

A experimental study of water vapor absorption characteristics using four components solution for gas fired absorption chiller (가스냉난방기용 4성분계 흡수용액의 수증기 흡수특성에 관한 실험적 연구)

  • Lee Yong-Won;Oh Young-Sam;Park Dal-Ryung;Baek Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.47-52
    • /
    • 1998
  • Water vapor absorption performance of four components solution ($LiBr+LiNO_3+LiC1+H_2O$) which could be substituted for commonly used $LiBr/H_2O$ solution in water cooled abosorption chiller is tested using a vertical tube absorber. Inlet solution concentration, inlet solution temperature, solution flow rate and inlet temperature of cooling water is varied as experimental parameters. The results of the experiment of water vapor absorption performance show that four components solution should have $2\%$ higher concentration for equal absorption capacity of $LiBr/H_2O$. But considering that four components solution have higher solubility than LiBr solution about $3\%$ high oncentration, four components solution ($LiBr+LiNO_3+LiC1+H_2O$) have more absorption capacity than LiBr solution in actual absorption chiller and can be applied to a small or air cooled absorption chiller.

  • PDF

Relationship between Ionic Conductivity and Composition of Li2O-ZrO2-SiO2 Glasses Determined from Mixture Design (혼합물계획법에 의한 Li2O-ZrO2-SiO2 유리의 이온전도도와 조성의 관계)

  • Kang, Eun-Tae;Kim, Myoung-Joong;Kim, Jae-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.219-223
    • /
    • 2007
  • The ionic conductivity of $Li_2O-ZrO_2-SiO_2$ glasses has been designed and analyzed on the basis of a mixture design experiment with constraints. Fitted models for the activation energy and the ionic conductivity are as follows: $Q(kJ/moi)=54.8565x_1+144.825x_2+133.846x_3-170.908x_1x_3-334.338x_2x_3$ $log{\sigma}(300K)=-5.00245x_1-1.17876x_2-15.5173x_3+17.4522x_1x_3$. The electrical properties are very sensitive to the ratio of $Li_2O/SiO_2$. The effect of $ZrO_2$ is less than that of this ratio but $ZrO_2$ component attributes to the reduction of the activation energy. The optimal composition for best ionic conduction based on these fitted models is $55Li_2O{\cdot}10ZrO_2{\cdot}35SiO_2$. Its activation energy and ionic conductivity at 300 K are 46.98 kJ/mol and $1.08{\times}10^{-5}{\Omega}^{-1}{\cdot}cm^{-1}$, respectively.

Electrochemical Properties and Crystal Structure of $Li_{1+x}Mn_2O_4$($0\leqx\leq0.075$) Synthesized at Solid State Method (고상법에 의한 $Li_{1+x}Mn_2O_4$ ($0\leqx\leq0.075$) 의 결정구조와 전기화학적 특성)

  • 박종광;고건문;임성훈;황종선;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.383-390
    • /
    • 2001
  • We have investigated the L $i_{1+x}$M $n_2$ $O_4$system as a cathode material for lithium rechargeable batteries. To improve the cycle performance of spinel LiM $n_2$ $O_4$ as the cathode of 4V class lithium secondary batteries, spinel phase L $i_{1+x}$M $n_2$ $O_4$(x=0, 0.025, 0.05, 0.075) was prepared at 75$0^{\circ}C$ for 48h. The preparation of L $i_{1+x}$M $n_2$ $O_4$ from L $i_2$ $O_3$ and Mn $O_2$ under air is studied. The compounds were synthesized by using solid-state reaction. Structural refinements were carried out with a Rietveld-refinement program. Electrochemical properties were examined using the Li/L $i_{1+x}$M $n_2$ $O_4$ cells. The capacity of L $i_{1+x}$M $n_2$ $O_4$ decreases with increases lithium content, while the cycle life improves. The initial discharge capacity are 118mAh/g and 116mAh/g for LiM $n_2$ $O_4$ decreases with increases lithium content, while the cycle life improves. The initial discharge capacity are 118mAh/g and 116mAh/g for LiM $n_2$ $O_4$ and L $i_{1.025}$M $n_2$ $O_4$, respectively.pectively.

  • PDF

The Characteristics of Vanadium based Composite Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 복합양극의 특성)

  • Kim Jong-Jin;Son Won-Keun;Kim Jae-Yong;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • A new treatment of $LiV_3O_8$ has been proposed for improving its electrochemical behavior as a cathode material for secondary lithium batteries. Lithium trivanadate, $LiV_3O_8$, can be prepared in a finely dispersed form by dehydration of aqueous lithium trivanadate gels. The ultrasonic treatment method for Liv30s has been examined in comparison with $LiV_3O_8$ prepared by solutionmethod. The ultrasonically treated products in water were characterized by XRD (X-ray diffractometry), TGA (thermogravimetric analysis) and SEM (scanning electron microscopy). These measurements showed that the ultrasonic treatment process of aqueous $LiV_3O_8$ caused a decrease in crytallinity and considerable increased in specific surface area and interlayer spacing. The product, ultrasonically treated in water for 2 h, showed a high initial discharge capacity and was charge-discharge cycled without large capacity loss. The ultrasonic treated Liv30s can improve not only the specific capacity, but also the cycling behavior

The Effects of Li-La-Ti-O Coating on the Properties of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material (Li[Ni0.3Co0.4Mn0.3]O2 양극물질의 Li-La-Ti-O코팅 효과)

  • Lee, Hye-Jin;Yun, Su-Hyun;Park, Bo-Gun;Ryu, Jea-Hyeok;Kim, Kwan-Su;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.890-896
    • /
    • 2009
  • Li(Ni, Co, Mn)$O_2$ has been known as one of the most promising cathode materials for lithium secondary batteries. However, it has some problems to overcome for commercialization such as inferior rate capability and unstable thermal stability. In order to address these problems, surface modification of cathode materials by coating has been investigated. In the coating techniques, selection of coating material is a key factor of obtaining enhanced properties of cathode materials. In this work, we introduced solid electrolyte (Li-La-Ti-O) as a coating material on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Specially, we focused on a rate performance of Li-La-Ti-O coated $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Both bare and Li-La-Ti-O 2 wt.% coated sample showed similar discharge capacity at 0.5C rate. However, as the increase of charge-discharge rate to 3C, the coated samples displayed better discharge capacity and cyclic performance than those of bare sample.

Effect of $B_{2}O_{3}$ addition on mechanical strength and microstructure of a porous $LiAlO_{2}$ electrolyte support for molten carbonate fuel cells (용융 탄산염 연료전지용 gamma $LiAlO_{2}$ 전해질 지지체의 미세구조 및 기계적 강도 변화에 대한 $B_{2}O_{3}$ 첨가의 영향)

  • Ham, Hyung-Chul;Yoon, Sung-Pil;Hong, Seong-Ah
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.54-59
    • /
    • 2007
  • A sintering aid, $B_{2}O_{3}$ have been included into a $LiAlO_{2}$ electrolyte support by a tape casting method in order to reinforce mechanical strength of the support for molten carbonate fuel cells [MCFCs). Starting idea originates from the low melting point of $B_{2}O_{3}$ ($450^{\circ}C$), which can provide the low temperature consolidation of ceramic materials. The mechanical properties and the microstructure changes of the $B_{2}O_{3}$-included electrolyte support were examined by scanning electron microscope, mercury porosimetry, X-ray powder diffraction [XRD], high temperature differential scanning calorimeter and three-point bending strength measurement. The mechanical strength was clearly improved by addition of $B_{2}O_{3}$. The increase of mechanical strength results from the neck growth of a new $LiAlO_{2}$ phase between $LiAlO_{2}$ particles by the liquid phase sintering. Average pore size and porosity of the electrolyte support reinforced by addition of the sintering aid, $B_{2}O_{3}$, was $0.24{\mu}m$ and 59%, respectively which were suitable microstructure of a matrix for an application of MCFCs.

  • PDF

Electrochemical Properties of $Li_xV_3O_8$ Composite Cathode for All-solid state Rechargeable Battery (고체전지용 $Li_xV_3O_8$ Composite 정극의 전기화학적 특성)

  • 김종욱;성창호;구할본;박복기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.733-738
    • /
    • 1998
  • 본 논문에서는 고체 리듐 전지를 개발하기 위하여 poly(ethylene oxide) [PEO] 에 $LiClO_4$, poly (vinylidene fluoride) [PVDF] 및 가소제로 propylene carbonate [PC] 와 ethylene carbonate[EC] 등을 혼합여 고분자 저해질을 제조하였다. 또한 고체 리듐 전지용 정극으로써 우수한 특성이 기대되는 $Li_xV_3O_8$을 졸-겔법에 의해 합성하여 $Li_xV_3O_8$SPE/Li cell 의 전기화학적 특성을 측정하였다. 고분자 matrix는 PEO와 PVDE를 혼합 사용한 결과 $PEO_4 PVDF_4LiCIO_4PC_5EC_5$ 고분자 전해질이 상온에서 $5.2 {\times} 10{-3}$ S/cm 의 높은 이온 전도도를 나타냈으며 리듐 이온 transference number는 0.3이었다. 졸-겔법에 의해 제조된 $Li_xV_3O_8$을 사용한 $Li_xV_3O_8$SPE/Li cell의 방전시 cell 저항이 방전 초기에는 비소한 증가를 하다가 방전 말기 전압인 2.0V에서 크게 증가하였다. $Li_xV_3O_8$ composite 정극의 첫 번째 방전 용량은 295㎃h/g이었으며 8번째 충방전 싸이클부터 방전 용량이 안정화 되었고 15번째 방전 용량도 212㎃h/g으로 고체 전지용 정극으로써 우수한 특성을 보였다.

  • PDF

A Study on the Synthesis and the Electrochemical Properties of $LiNi_{1-y}$${Co_y}{O_2}$from $Li_2$$CO_3$, ${NiCO_3}$, and $CoCO_3$ ($Li_2$$CO_3$, ${NiCO_3}$, $CoCO_3$로부터 $LiNi_{1-y}$${Co_y}{O_2}$의 합성 및 전극특성 연구)

  • Rim, Ho;Kang, Seong-Gu;Chang, Soon-Ho;Song, Myoung-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.515-521
    • /
    • 2001
  • 출발 물질로서 L $i_2$C $O_3$, NiC $O_3$, CoC $O_3$를 사용하고 조성과 합성 온도를 변화시켜, 고온 고상법에 의하여 LiN $i_{1-y}$ $Co_{y}$ $O_2$(y=0.1, 0.3, 0.5)를 합성하였다. 합성과 시료들의 결정구조, 미세구조 그리고 전기화학적 특성을 조사하였다. 80$0^{\circ}C$와 8$50^{\circ}C$에서 제조한 L $i_{x}$N $i_{1-y}$ $Co_{y}$ $O_2$는, 삼방정계(space group: R3m)의 $\alpha$-NaFe $O_2$구조로 결정화되어 있는 층상 구조를 형성하였다. LiN $i_{1-y}$ $Co_{y}$ $O_2$(y=0.1, 0.3, 0.5)는 Co의 양이 증가함에 따라 a축과 c축의 크기가 감소하였는데, 이는 코발트 이온의 크기가 니켈 이온의 크기보다 작은데 기인하는 것이다. 그러나 c축과 a축의 크기의 비(c/a)가 증가하였음은 이차원적 구조가 잘 발달됨을 보여준다. 니켈에 대한 코발트의 치환량에 따른 리튬 이온의 삽입/추출 가역성은 코발트의 치환량이 증가하면서 증가하여 y=0.3인 LiN $i_{0.9}$ $Co_{0.1}$ $O_2$에서 대체로 우수하였고 그 이상으로 y값이 증가하면 가역성이 나빠졌다. 80$0^{\circ}C$에서 합성한 LiN $i_{0.9}$ $Co_{0.1}$ $O_2$가 가장 큰 초기 방전 용량 146 mAh/g을 나타내었으며, 싸이클링 성능도 비교적 우수하였다. 8$50^{\circ}C$에서 합성한 LiN $i_{0.9}$ $Co_{0.1}$ $O_2$와 LiN $i_{0.7}$ $Co_{0.3}$ $O_2$가 우수한 싸이클링 성능을 보였다.다. 싸이클링 성능을 보였다.다.보였다.다.

  • PDF