Browse > Article
http://dx.doi.org/10.4191/KCERS.2007.44.4.219

Relationship between Ionic Conductivity and Composition of Li2O-ZrO2-SiO2 Glasses Determined from Mixture Design  

Kang, Eun-Tae (Division of Nano & Advanced Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Kim, Myoung-Joong (R&D center, Gonggan Ceramic Co., Ltd.)
Kim, Jae-Dong (ATT Ltd.)
Publication Information
Abstract
The ionic conductivity of $Li_2O-ZrO_2-SiO_2$ glasses has been designed and analyzed on the basis of a mixture design experiment with constraints. Fitted models for the activation energy and the ionic conductivity are as follows: $Q(kJ/moi)=54.8565x_1+144.825x_2+133.846x_3-170.908x_1x_3-334.338x_2x_3$ $log{\sigma}(300K)=-5.00245x_1-1.17876x_2-15.5173x_3+17.4522x_1x_3$. The electrical properties are very sensitive to the ratio of $Li_2O/SiO_2$. The effect of $ZrO_2$ is less than that of this ratio but $ZrO_2$ component attributes to the reduction of the activation energy. The optimal composition for best ionic conduction based on these fitted models is $55Li_2O{\cdot}10ZrO_2{\cdot}35SiO_2$. Its activation energy and ionic conductivity at 300 K are 46.98 kJ/mol and $1.08{\times}10^{-5}{\Omega}^{-1}{\cdot}cm^{-1}$, respectively.
Keywords
Experimental design; Mixture design; $Li_2O-ZrO_2-SiO_2$ glass; Ionic conductivity; Optimal composition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. A. Cornell, Experimental with Mixture; pp. 481, Wiley- Interscience Publication, 1990
2 M. Tatsumisago, K. Yoneda, N. Machida, and T. Minami, 'Ionic Conductivity of Rapidly Quenched Glasses with High Concentration of Lithium Ions,' J. Non-Cryst. Solids, 95 & 96 857-64 (1987)   DOI   ScienceOn
3 J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Roberston, 'Electrical Properties of Amorphous Lithium Electrolyte Thin Films,' Solid State Ionics, 53 647-54 (1992)   DOI   ScienceOn
4 P. Birke, W. F. Chu, and W. Weppner, 'Materials for Lithium Thin-Film Batteries for Application in Silicon Technology,' Solid State Ionics, 93 1-15 (1997)   DOI   ScienceOn
5 S. J. Visco and M. Y. Chu, 'Protective Coatings for Negative Electrodes,' U.S. Patent 6, 025, 094 (2000)
6 M. Yoshiyagawa and M. Tomozawa, 'Electrical Properties of Rapidly Quenched Lithium-Silicate Glasses,' J. de Phys., C9 411-14 (1982)   DOI
7 D. W. Marquardt, 'Generalized Inverses, Ridge Regression, Biased Linear Estimation and Nonlinear Estimation,' Technometrics, 12 591-612 (1970)   DOI   ScienceOn
8 K. Miyauchi, K. Matsumoto, K. Kanehori, and T. Kudo, 'New Amorphous Thin Films Ion Conductive Solid Electrolyte,' Solid State Ionics, 9&10 1469-72 (1983)   DOI   ScienceOn
9 T. J. Mitchell, 'An Algorithm for Construction of 'Doptimal' Experimental Designs,' Technometrics, 16 203-10 (1974)   DOI
10 A. P. Novaes de Oliveira, C. Leonelli, T. Manfredini, G. C. Pellacani, C. Ramis, M. Trombetta, and G. Busca, 'Properties of Glasses belonging to the $Li_2O-ZrO_2-SiO_2$ System,' Phys. Chem. Glasses, 39 [4] 213-21 (1998)
11 O. V. Mazurin, M. V. Strel'tsina, T. P. Shvaiko-Shvaik- Ovskaya, and A. O. Mazurina, 'Determination of the Most Probable Concentration Dependences of the Properties of Binary Glasses with the Use of the SciGlass Information System,' Glass Physics and Chemistry, 29 [6] 555-70 (2003)   DOI
12 O. V. Mazurin, 'Glass Properties: Compliation, Evaluation, and Prediction,' J. Non-Cryst. Solids, 351 1103-12 (2005)   DOI   ScienceOn
13 I. I. Kitaigorodskii, I. I., and G. A. Ellern, 'Research of the Glass Formations B Alkaline Zirconium Silicate Systems,' Tr. Mosk. Khim. Teknol. Inst., 50 26-31 (1966)
14 J. R. Macdonald, and J. A. Garber, 'Analysis of Impedance and Admittance Data for Solids and Liquids,' J. Electrochem. Soc., 124 [7] 1022-30 (1977)   DOI