• Title/Summary/Keyword: $Li_2MnO_3$

Search Result 302, Processing Time 0.022 seconds

Preparation and Electrochemical Performance of 1.5 V and 3.0 V-Class Primary Film Batteries for Radio Frequency Identification (RFID)

  • Lee, Young-Gi;Choi, Min-Gyu;Kang, Kun-Young;Kim, Kwang-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • 1.5 V and 3.0 V-class film-type primary batteries were designed for radio frequency identification (RFID) tag. Efficient fabrication processes such as screen-printings of conducting layer ($25{\mu}m$), active material layer ($40{\mu}m$ for anode and $80{\mu}m$ for cathode), and electrolyte/separator/electrolyte layer ($100{\mu}m$), were adopted to give better performances of the 1.5 V-class film-type Leclanch$\acute{e}$ primary battery for battery-assisted passive (BAP) RFID tag. Lithium (Li) metal is used as an anode material in a 3.0 V-class film-type $MnO_2||$Li primary battery to increase the operating voltage and discharge capacity for application to active sensor tags of a radio frequency identification system. The fabricated 3.0 V-class film-type Li primary battery passes several safety tests and achieves a discharge capacity of more than 9 mAh $cm^{-2}$.

Thick Positive Electrode using Polytetrafluorethylene (PTFE) Binder for High-Energy-Density Lithium-ion Batteries (높은 에너지 밀도의 리튬이온 이차전지를 위한 PTFE 바인더를 적용한 고로딩 양극)

  • Kang, Jeong Min;Kim, Hyoung Woo;Jang, Young Seok;Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.2
    • /
    • pp.28-33
    • /
    • 2021
  • Many researchers have increased the loading level of electrodes to improve the energy density of secondary batteries. In this study, high-loading NCM523 (LiNi0.5Co0.2Mn0.3O2) positive electrode is manufactured using a polytetrafluoroethylene (PTFE) binder, not the conventional polyvinylidene fluoride (PVdF) binder, which has been commonly used in lithium-ion batteries. Through the kneading process using PTFE suspension, not the conventional slurry process using PVdF solution in N-methyl-2-pyrrolidinone (NMP), thick electrodes with high loading are easily manufactured. When the PTFE and PVdF-based electrodes are prepared at a loading level of 5.0 mAh/cm2, respectively, the PTFE-based electrode shows better cycle performance and rate capability than those of PVdF-based electrodes. The electrode manufactured by the kneading process using a PTFE binder has high electrode porosity due to insufficient roll-press, but the porosity can be lowered by high temperature roll-press over 120℃. However, there is no significant difference in cycle performance according to the roll press temperature. In addition, the cycle performance of the high loading electrode is slightly improved by increasing the content of the conductive material. Overall, the PTFE binder can improve the performance of the high loading electrode, but additional solutions will be needed.

Piezoelectric and Dielectric Properties of Low Temperature Sintered Pb(Mn1/3Nb2/3)0.02(Ni1/3Nb2/30.12(ZrxTi1-x)0.86O3 System Ceramics

  • Yoo, Ju-Hyun;Lee, Sang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.121-124
    • /
    • 2009
  • In this study, in order to develop compositions of ceramics suitable for piezoelectric actuator and ultrasonic vibrator applications using low temperature sintering, multilayer, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$ and $Na_2CO_3$ as sintering aids. Their structural, piezoelectric and dielectric characteristics were investigated according to the Zr/Ti ratio. As the Zr/Ti ratio increased, the electromechanical coupling factor $k_p$, and piezoelectric constant $d_{33}$ and the mechanical quality factor $Q_m$ all increased with Zr/Ti ratio and then decreased after the ratio exceeded 50/50. At the ratio of Zr/Ti =49/51 and sintering temperature of $900^{\circ}C$; the density, electromechanical coupling factor $k_p$, dielectric constant ${\varepsilon}_r$ piezoelectric $d_{33}$ constant and mechanical quality factor $Q_m$ all showed the optimum values of 7.900 $g/cm^3$, 0.576, 856, 312 pC/N, 1,326, respectively. These property values are very suitable for multilayer ceramics actuator applications.

The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials (리튬이차전지 양극활물질의 암모니아 침출액에서 공침법에 의한 활물질 전구체의 합성에 대한 암모니아 농도의 영향)

  • Park, Sanghyuk;Ku, Heesuk;Lee, Kyoung-Joon;Song, Jun Ho;Kim, Sookyung;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.9-16
    • /
    • 2015
  • In a recycling scheme of spent lithium ion batteries, a co-precipitation process for the re-synthesis of precursor is essential after the leaching of lithium ion battery scraps. In this study, the effect of ammonia as impurity during the co-precipitation process was investigated in order to re-synthesize a precursor of Ni-rich cathode active material $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622). As ammonia concentration increases from 1 M (the optimum condition for synthesis of the precursors based on 2 M of metal salt solution) to 4 M, the composition of obtained precursors deviates from the designed composition, most notably for Ni. The Ni co-precipitation efficiency gradually decreases from 100% to 87% when the concentration of ammonia solution increases from 1 M to 4 M. Meanwhile, the morphological properties of the obtained precursors such as sphericity, homogeneity and size distribution of particles were also investigated.

Effect of Fast Charging Mode on the Degradation of Lithium-Ion Battery: Constant Current vs. Constant Power (정전류/정출력 고속충전 방식에 따른 리튬이온전지의 열화 비교 연구)

  • Park, Sun Ho;Oh, Euntaek;Park, Siyoung;Lim, Jihun;Choi, Jin Hyeok;Lee, Yong Min
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.173-179
    • /
    • 2020
  • Electric vehicles (EVs) using lithium secondary batteries (LIBs) with excellent power and long-term cycle performance are gaining interest as the successors of internal combustion engine (ICE) vehicles. However, there are few systematic researches for fast charging to satisfy customers' needs. In this study, we compare the degradation of LIB where its composition is LiNi0.5Co0.2Mn0.3/Graphite with the constant current and constant power-charging method. The charging speed was set to 1C, 2C, 3C and 4C in the constant current mode and the value of constant power was calculated based on the energy at each charging speed. Therefore, by analyzing the battery degradation based on the same charging energy but different charging method; CP charging method can slow down the battery degradation at a high rate of 3C through the voltage curve, capacity retention and DC-IR. However, when the charging rate was increased by 4C or more, the deviation between the LIBs dominated the degradation than the charging method.

Poly(Imide) Separator Functionalized by Melamine Phosphonic Acid for Regulating Structural and Thermal Stabilities of Lithiumion Batteries

  • Ye Jin Jeon;Juhwi Park;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.365-372
    • /
    • 2024
  • As the energy density of lithium-ion batteries (LIBs) continues to increase, various separators are being developed to with the aim of improving the safety performance. Although poly(imide) (PI)-based separators are widely used, it is difficult to control their pore size and distribution, and this may further increase the risk associated. Herein, a melamine phosphonic acid (MP)-coated PI separator that can effectively control the pore structure of the substrate is suggested as a remedy. After the MP material is embedded into the PI separator with a simple one-step casting process, it effectively clogs the large pores of the PI separator, preventing the occurrence of internal short circuits during charging. It is anticipated that the MP material can also suppress rapid thermal runaway upon cycling due to its ability to reduce the internal temperature of the LIB cell caused by the desirable endothermic behavior around 300℃. According to experiments, the MP-coated PI separator not only decreases the thermal shrinkage rate better than commercial poly(ethylene) (PE) separators but also exhibits a desirable Gurley number (109.6 s/100 cc) and electrolyte uptake rate (240%), which is unique. The proposed separator is electrochemically stable in the range 0.0-5.0 V (vs. Li/Li+), which is the typical working potential of conventional electrode materials. In practice, the MP-coated PI separator exhibits stable cycling performance in a graphite-LiNi0.83Co0.10Mn0.07O2 full cell without an internal short circuit (retention: 90.3%).

Efficient Synthesis of hypho-2,5-$S_2B_7H_{11}$ and Preparation of New nido-, arachno-, and hypho-Metalladithiaborane Clusters Derived from Its Anion hypho-$S_2B_7H_{10}{^-}$

  • 강창환;김성준;고재정;강상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1067-1074
    • /
    • 1995
  • Reaction of arachno-S2B7H8- with either THF or 1,2-dimethoxyethane upon refluxing condition results in the formation of the previously known compound hypho-S2B7H10-. Protonation of hypho-S2B7H10- with HCl/Et2O generates hypho-2,5-S2B7H11 in good yield. This hypho-S2B7H10- anion has been employed to generate a series of new nido-, arachno-, and hypho-metalladithiaborane clusters. Reaction of the anion with Cp(CO)2FeCl results in direct metal insertion and the formation of a complex containing the general formula (η5-C5H5)FeS2B7H8. Spectroscopic studies of nido-6-CpFe-7,9-S2B7H8 Ⅰ demonstrated that compound Ⅰ was shown to have an nido-type cage geometry derived from an octadecahedron missing one vertex, with the iron atom occupying the three-coordinate 6-position in the cage and the two sulfurs occupying positions on the open face of the cage. Reaction of hypho-S2B7H10- with CoCl2/Li+[C5H5]- gave the previously known complex arachno-7-CpCo-6,8-S2B6H8 Ⅱ. Also, the reaction of the anion with [Cp*RhCl2]2 gave the complex arachno-7-Cp*Rh-6,8-S2B6H8 Ⅲ, the structure of which was shown to be that of complex Ⅱ. The similarity of the NMR spectra of Ⅱ and Ⅲ suggest that Ⅲ adopts cage structure similar to that previously confirmed for Ⅱ. A series of 9-vertex hypho clusters in which the sulfur atoms are bridged by different species isoelectronic with a BH3 unit, such as HMn(CO)4 or SiR2 have been prepared. Compounds Ⅳ,Ⅴ and Ⅵ are each 2n+4 skeletal electron systems and would be expected according to skeletal electron counting theory to adopt hypho-type polyhedral structures derived from an icosahedron missing three vertices. The complex hypho-1-(CO)4Mn-2,5-S2B6H9 Ⅳ was obtained by the reaction of the anion with (CO)5MnBr and has been shown from spectroscopic data to consist of a (CO)4Mn fragment bound to the two sulfur atoms S2 and S5 of hypho-S2B7H10-. Also, similar hypho-type complexes hypho-1-R2Si-2,5-S2B6H8 (R=CH3 Ⅴ, R=C6H5 Ⅵ) have been prepared from the reaction of hypho-S2B7H10- with R2SiHCl.

Geochemistry and Origin of $CO_2$-rich Groundwater from Sedimentary Rocks of Kyungsang System (경상계 퇴적암에서 산출되는 탄산지하수의 지화학적 특성과 생성기원)

  • 정찬호;이진국
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.51-62
    • /
    • 2000
  • The $CO_2$-richrich water pumps or springs out at two sites (Sinchon and Kohran) consisting of Cretaceous sedimentary rocks in Kyungpook area. The water has been long known as its soda pop-liketaste and therapeutic effect against calcium deficit, stomach and skin troubles, etc. The water arecharacterized by a high $CO_2$ concentration $(P_{CO2}=0.29~l.01 atm)$ and electrical conductance (1,093~2,810$\mu$S/cm). The $CO_2$-rich water belongs to Ca(Na)-$HCO_3$ type in chemical classification. The contents of Ca, Mg, Na, HCO$_3$ and Fe of $CO_2$-rich water show much higher values than those of general groundwater Environmental isotopic data $(^2H/^1H, ^{18}O/^{16}O and ^3H/^1H)$ indicate that the water is ofmeteoric origin recharged after 1950s. The $CO_2$ in the springs seems to be originated from deep-seatedsource related to acidic porphyry and granite nearby sedimentary rocks. Carbonate minerals and albiteare likely to be the major source minerals of the dissoved inorganic constituents in the $CO_2$-rich water.The equilibrium state between major minerals and $CO_2$-rich water was calculated by a thermodynamicprogram.

  • PDF

Magnetic Tunnel Junctions with AlN and AlO Barriers

  • Yoon, Tae-Sick;Yoshimura, Satoru;Tsunoda, Masakiyo;Takahashi, Migaku;Park, Bum-Chan;Lee, Young-Woo;Li, Ying;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • We studied the magnetotransport properties of tunnel junctions with AlO and AlN barriers fabricated using microwave-excited plasma. The plasma nitridation process provided wider controllability than the plasma oxidization for the formation of MTJs with ultra-thin insulating layer, because of the slow nitriding rate of metal Al layers, comparing with the oxidizing rate of them. High tunnel magnetoresistance (TMR) ratios of 49 and 44% with respective resistance-area product $(R{\times}A) of 3 {\times} 10^4 and 6 {\times} 10^3 {\Omega}{\mu}m^2$ were obtained in the Co-Fe/Al-N/Co-Fe MTJs. We conclude that AlN is a hopeful barrier material to realize MTJs with high TMR ratio and low $R{\times}A$ for high performance MRAM cells. In addition, in order to clarify the annealing temperature dependence of TMR, the local transport properties were measured for Ta $50{\AA} /Cu 200 {\AA}/Ta 50 {\AA}/Ni_{76}Fe_{24} 20 {\AA}/Cu 50 {\AA}/Mn_{75}Ir_{25} 100 {\AA}/Co_{71}Fe_{29} 40 {\AA}/Al-O$ junction with $d_{Al}= 8 {\AA} and P_{O2}{\times}t_{0X}/ = 8.4 {\times} 10^4$ at various temperatures. The current histogram statistically calculated from the electrical current image was well in accord with the fitting result considering the Gaussian distribution and Fowler-Nordheim equation. After annealing at $340^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 44%, the average barrier height increased to 1.12 eV and its standard deviation decreased to 0.1 eV. The increase of TMR ratio after annealing could be well explained by the enhancement of the average barrier height and the reduction of its fluctuation.