• 제목/요약/키워드: $LiCoO_{2}$

검색결과 700건 처리시간 0.032초

Nucleophilic Addition of Phosphate to Coordinated (Arene)manganes Tricarbonyl Cations

  • Chung, Young-Keun;Bae, Hye-Kyung;Jung, Il-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권6호
    • /
    • pp.349-352
    • /
    • 1988
  • [(Benzene)Mn$(CO)_3$]$^+$ reacts with NaP(O) (OR)$_2$ (R = Me, Et, Ph) to give the phosphonate compound 1. Compound 1 reacts with R'Li (R = Me, Ph, $^nBu, ^tBu$) to yield the isomerized compound 2 and the alkylated compound 3. [(Toluene)Mn$(CO)_3$]$^+$ reacts with NaP(O)$(OMe)_2$ to give the phosphonate complexes 1-A and 1-B. Treatment of 1-A with $^tBuLi$ in THF affords complexes 3-A and 3-B with the later major. With 1-B only the complex 3-C is formed. [(Anisole)Mn$(CO)_3$]$^+$ reacts with NaP(O)$(OMe)_2$ to give the phosphate complex 1-C, which on treatment with $^tBuLi$ and then $H_2O$ yields compound 3-D. After demetallation of compound 3-D, meta-tertbutyl-anisole is obtained in a reasonable yield.

리튬용융염계 산화성분위기에서 초합금의 고온 부식거동 (Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere)

  • 조수행;임종호;정준호;오승철;서중석;박성원
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

탄산화물(Li2CO3, K2CO3)을 이용한 반응증류공정에서 LiCl-KCl 공융염 내 NdCl3의 분리특성 (Separation Characteristics of NdCl3 from LiCl-KCl Eutectic Salt in a Reactive Distillation Process using Li2CO3 or K2CO3)

  • 은희철;최정훈;이태교;조인학;김나영;유재욱;박환서;안도희
    • 방사성폐기물학회지
    • /
    • 제13권3호
    • /
    • pp.181-186
    • /
    • 2015
  • 사용후핵연료 파이로프로세싱에서 발생하는 방사성폐기물의 양을 최소화하기 위해서는 방사성 핵종 함유 염폐기물을 효과적으로 처리할 수 있는 기술개발이 필요하다. 이를 위해 탄산화물(Li2CO3, K2CO3)을 이용한 반응증류공정에서 LiCl-KCl 공융염 내 NdCl3의 분리특성을 관찰하였다. HSC-Chemistry 프로그램을 이용한 탄산화물과 NdCl3의 반응모델결과에서 NdCl3는 탄산화물의 주입조건 및 온도변화에 따라 산염화물(NdOCl) 또는 산화물(Nd2O3) 형태로 전환됨이 확인되었으며, 탄산화물의 주입조건에 따른 LiCl-KCl-NdCl3계의 반응증류시험에서 반응모델결과와 유사한 경향을 확인하였다. 이 결과들을 이용하여 LiCl-KCl 공융염 내 NdCl3를 고화가 용이한 산화물 형태로 분리하기 위한 공정조건을 도출하였다.

Improving the Capacity Retention of LiNi0.8Co0.2O2by ZrO2 Coating

  • Lee Sang-Myoung;Oh Si-Hyoung;Lee Byung-Jo;Cho Won-Il;Jang Ho
    • 전기화학회지
    • /
    • 제9권1호
    • /
    • pp.6-9
    • /
    • 2006
  • The effect of $ZrO_2$-coating on the electrochemical properties of the cathode material $LiNi_{0.8}Co_{0.2}O_2$ was investigated using EPMA, TEM, and EIS. In particular, we facused on the distribution of the $ZrO_2$ on the particle surface to study the relation between electrochemical properties of the coated cathode and the distribution of the coating materials in the particle. Based on the results from the composition analysis and electrochemical tests, it was found that the coating layer consisted of nano-sized $ZrO_2$ particles attached non-uniformly on the particle surface and the $ZrO_2$ layer significantly improved the electrochemical properties of the cathode by suppressing the impedance growth at the interface between the electrodes and the electrolyte.

초고압 합성법으로 제조한 리튬이온전지 음극활물질 Li4Ti5O12의 전기화학적 특성 (Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery)

  • 지성화;조완택;김현효;김효진
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.337-342
    • /
    • 2018
  • Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.