• Title/Summary/Keyword: $LiBr-H_2O$ Solution

Search Result 62, Processing Time 0.021 seconds

Formation of Mo(NAr)(PMe₃)₂Cl₃and Mo₂(PMe₃)₄Cl₄from Reduction of Mo(NAr)₂Cl₂(DME) with Mg in the Presence of PMe₃[Ar=2,6-diisopropylphenyl]

  • 정건수;박병규;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.213-217
    • /
    • 1997
  • Magnesium reduction of Mo(N-C6H3-2,6-i-Pr2)2Cl2(DME) in the presence of trimethylphosphine led to a mixture of Mo(N-C6H3-2,6-i-Pr2)(PMe3)2Cl3, 1, and Mo2(PMe3)4Cl4, 2. In solution 1 is slowly air-oxidized to Mo(N-2,6-i-Pr2-C6H3)(OPMe3)(PMe3)Cl3, 3. 1 is chemically inert to carbon nucleophiles (ZnMe2, ZnEt2, AlMe3, AlEt3, LiCp, NaCp, TlCp, NaCp*, MeMgBr, EtMgBr), oxygen nucleophiles (LiOEt, LiO-i-Pr, LiOPh, LiOSPh), and hydrides (LiBEt3H, LiBEt3D). Crystal data for 1: orthorhombic space group P212121, a=11.312(3) Å, b=11.908(3) Å, c=19.381(6) Å, Z=4, R(wR2)=0.0463 (0.1067). Crystal data for 2: monoclinic space group Cc, a=18.384(3) Å, b=9.181(2) Å, c=19.118(3) Å, b=124.98(1)°, Z=4, R(wR2)=0.0228 (0.0568). Crystal data for 3: orthorhombic space group P212121, a=11.464(1) Å, b=14.081(2) Å, c=16.614(3) Å, Z=4, R(wR2)=0.0394 (0.0923).

Characteristic analysis of air-cooled absorption refrigeration machine (공냉식 흡수식 냉동기의 특성 해석)

  • Kwon Oh-Kyung;Moon Choon-Geun;Yang Young-Myung;Yu Sun-Il;Yoon Jung-In
    • 한국가스학회:학술대회논문집
    • /
    • 1998.09a
    • /
    • pp.249-254
    • /
    • 1998
  • This paper describes the study of developing air-cooled absorption system which uses a new working solution instead of LiBr solution to improve the performance of system. The absorption chiller-heater considered was an air-cooled, double-effect, $H_2O/LiBr+HO(CH_2)_3$ system of parallel flow type. In this study, we found out the characteristic of new working solution through the cycle simulation and compared the result that of LiBr solution to evaluate. The new working fluid has a wider working range with $8\%$ higher crystallization limit at the saturated refrigerant pressure of 0.8kPa. The optimum designs and operating conditions of air-cooled absorption system were suggested based on this cycle simulation analysis. It was demonstrated that new working fluid substantially improves the performance of the absorption refrigeration machine and is expected to increase the COP by as much as $5\%$.

  • PDF

Characteristics of Absorption Heat Transfer on Micro-Scale Hatched Tubes with Different Surface Roughness (미소해칭 전열관의 표면거칠기에 따른 흡수열전달 특성)

  • 조현철;김춘동;김익생;박찬우;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.641-647
    • /
    • 2002
  • Objectives of this paper are to investigate the effect of roughness of micro-hatching tubes on the absorption performance and to develop on experimental correlation of Nusselt as a function of the roughness. Three different micro-scale hatched tubes and a bare tube were tested in the present experiment. $H_{2}O/LiBr$ solution is used as working fluid. It was found that absorption performance of micro-scale hatched tubes were improved upto 2 times with an error band of ${\pm}25%$ compared with the bare tube. An experimental correlation of Nusselt was developed as a function of the roughness.

Heat transfer and pressure drop characteristics of plate heat exchangers for absorption application (흡수식 시스템의 용액열교환기용 판형열교환기의 열전달 및 압력강하 특성 실험)

  • Kim, Hyun-Jun;Kim, Jung-Hwan;Kim, Sung-Soo;Jeong, Jin-Hee;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.347-352
    • /
    • 2005
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop in plate heat exchangers for absorption applications, and to quantify the effect of mass flow rate, solution concentration, and geometric conditions such as chevron angle on the heat transfer coefficient and pressure drop in the plate heat exchangers. The working fluid is $H_2O$/LiBr solution with the LiBr concentration range of 53.2 - 62.5 % in mass. The results show that the overall heat transfer coefficient increases linearly with increasing Re. The heat transfer rate increases with increasing the chevron angle while it does not significantly depend on the LiBr concentration. The pressure drop also increases with increasing the chevron angle. The effect of the chevron angle on the pressure drop is more significant than that of the concentration.

  • PDF

A Study on the Characteristics of Local Corrosion for Gas Absorption Refrigeration and Hot Water Systems in LiBr-$H_2O$ Working Fluids (LiBr작동유체 중에서 가스흡수식 냉온수기의 국부부식 특성에 관한 연구)

  • Uh- Joh Lim;Ki-Cheol Jeong;Byoung-Du Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.714-720
    • /
    • 2003
  • Due to the electric power shortage in summer season and regulation of freon refrigerant, the application of gas absorption refrigeration and hot water systems are considerably increasing trend. But, this system consists of condenser, heat exchanger, supply pipe and radiator etc. which are easily corroded by acidity and dissolved oxygen and gases. In result, this system occurs scale attachment and corrosion damage like pitting and crevice corrosion. In this study, electrochemical polarization test of heat exchanger tubing material (copper, aluminium brass, 30% cupronickel(30% Cu-Ni)) was carried out in 60% lithium bromide solution at $95^{\circ}C$. As a result of polarization test, corrosion behavior by impressed potential and local corrosion. such as galvanic corrosion, pitting corrosion behavior, of tubing materials was investigated. The main results obtained are as follows: (1) The effect of pitting and crevice corrosion control of 30% cupronickel in 60% LiBr solution at $95^{\circ}C$ is very excellent. (2) Dissimilar metal corrosion of 30% cupronickel coupling to aluminium bronze is the most sensitive. (3) Current density behavior of tube materials by impressed potential is high in order of copper > aluminium brass > 30% cupronickel.

Analysis of Thermodynamic Design Data for Heating of Double - Effect Solar Absorption System using LiBr - water and Ethylene Glycol Mixture (에틸렌글리콜 혼합액을 사용하고, 태양열을 보조열원으로 하는 이중효용 흡수식 시스템의 난방 특성해석)

  • Won, S.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.51-61
    • /
    • 2002
  • Analysis of thermodynamic design data of double effect solar absorption heat pump system for heating has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data. enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture (H2O: CHO ratio 10:1 by mole) by computer simulation. The obtained results, COP and mass flow ratio of the water-lithium bromide-ethylene glycol system, are compared with data for the water-Libr pair solution.

Enhancement of Absorption Performance Due to the Wavy Film of the Vertical Absorber Tube

  • Kim Jung-Kuk;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2006
  • Absorption performance at the vertical interface between refrigerant vapor and liquid solution of $LiBr-H_{2}O$ solution was enhanced by the waves formed due to the interfacial shear stress. The present study investigated experimentally and analytically the improvements of absorption performance in a falling film by wavy film flow. The dynamic parameter was the film Reynolds numbers ranged from 50 to 150. The energy and diffusion equations were solved simultaneously to find the temperature and concentration profiles at the interface of liquid solution and refrigerant vapor. Absorption characteristics due to heat and mass transfer were analyzed for the falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Absorption performance showed a peak value at the solution flow rate of $Re_{f}>100$. Absorption performance for the wavy film flow was found to be greater by approximately 10% than that for uniform film flow. Based on numerical and experimental results, the maximum absorption rate was obtained for the wavy flow caused by spring insert. The difference between the measured and the predicted results were ranged from 5.8 to 12%.

Performance Characteristic of the Compression-Absorption Hybrid Heat Pump Cycles (흡수압축 하이브리드 히트펌프 사이클의 성능특성)

  • Yoon J. I.;Kwon O. K.;Yang Y. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 1999
  • This study describes the results of Coefficient of Performance(COP) analysis by cycle simulation for two types of absorption-compression hybrid cycle using the Water/Lithium Bromide solution pair. These types are basic hybrid systems introducing a mechanical compression process into the refrigerant vapor phase of the single effect absorption cycle. In absorption-compression hybrid cycles, coefficient of performance is improved compared with absorption cycle. Hybrid cycle Type 2 is considered as a key technology to support energy utilization system, given its capability of utilizing waste heat to drive system with a high level of efficiency.

  • PDF

Analysis of Thermodynamic Design Data for Cooling of Double -Effect Absorption System of Solar Energy using LiBr - water and Ethylene Glycol Mixture (흡수액으로 에틸렌글리콜이 혼합되고 태양열을 이용한 이중효용 흡수식 시스템의 냉방 특성해석)

  • Won, Seung-Ho;Park, Sang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.45-54
    • /
    • 2003
  • For cooling of double effect absorption heat pump system of solar heating source, analysis of thermodynamic design data has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data, enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture ($H_2O$ : CHO ratio 10:1 by mole) by computer simulation are done. The obtained results, COP and mass flow ratio of the water - lithium bromide - ethylene glycol system, are compared with data for the water-Libr pair solution.

A Numerical Analysis on the Heat Transfer and Pressure Drop Characteristics of Welding Type Plate Heat Exchangers (용접형 판형열교환기의 열전달 및 압력강하특성에 관한 수치해석)

  • Jeong, Jong-Yun;Nam, Sang-Chul;Kang, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.676-682
    • /
    • 2008
  • Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using Computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is $H_2O$/LiBr solution with the LiBr concentration of 50-60% in mass. The numerical simulation shows reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems.