• 제목/요약/키워드: $L_k$-operator

검색결과 328건 처리시간 0.023초

휠로더 가상 성능평가를 위한 V상차 작업 운전자 모델 (Development of Wheel Loader V-Pattern Operator Model for Virtual Evaluation of Working Performance)

  • 오광석;김학구;고경은;김판영;이경수
    • 대한기계학회논문집A
    • /
    • 제38권11호
    • /
    • pp.1201-1206
    • /
    • 2014
  • 본 논문에서는 가상의 V상차 작업을 위한 이벤트 기반의 휠로더 운전자 모델을 개발하였다. 운전자 모델 개발의 목적은 휠로더의 일반적인 작업인 V상차 작업 시 동역학적 해석과 작업성능을 가상의 시뮬레이션 모델과 운전자 입력을 이용해 예측 및 평가하는 것이다. V상차 작업은 4단계로 이루어져 있으며, 총 8 개의 이벤트로 인해 순차적으로 작업이 진행된다. 개발된 3D 휠로더 시뮬레이션 모델은 Matlab/Simulink 환경에서 구성 되었으며, 시뮬레이션 결과는 V상차 작업의 실차 데이터와 비교 되었다. 본 연구에서 개발된 운전자 모델로 향후 가상의 V상차 작업에 대한 작업성능 및 동역학적 해석이 가능할 것으로 본다.

A Point Mutation at the C-Terminal Half of the Repressor of Temperate Mycobacteriophage L1 Affects Its Binding to the Operator DNA

  • Ganguly, Tridib;Chattoraj, Partho;Das, Malabika;Chanda, Palas K.;Mandal, Nitai.C.;Lee, Chia Y.;Sau, Subrata
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.709-714
    • /
    • 2004
  • The wild-type repressor CI of temperate mycobacteriophage L1 and the temperature-sensitive (ts) repressor CIts391 of a mutant L1 phage, L1cIts391, have been separately overexpressed in E. coli. Both these repressors were observed to specifically bind with the same cognate operator DNA. The operator-binding activity of CIts391 was shown to differ significantly than that of the CI at 32 to $42^{\circ}C$. While 40-95% operator-binding activity was shown to be retained at 35 to $42^{\circ}C$ in CI, more than 75% operator-binding activity was lost in CIts391 at 35 to $38^{\circ}C$, although the latter showed only 10% less binding compared to that of the former at $32^{\circ}C$. The CIts391 showed almost no binding at $42^{\circ}C$. An in vivo study showed that the CI repressor inhibited the growth of a clear plaque former mutant of the L1 phage more strongly than that of the CIts391 repressor at both 32 and $42^{\circ}C$. The half-life of the CIts391-operator complex was found to be about 8 times less than that of the CI-operator complex at $32^{\circ}C$. Interestingly, the repressor-operator complexes preformed at $0^{\circ}C$ have shown varying degrees of resistance to dissociation at the temperatures which inhibit the formation of these complexes are inhibited. The CI repressor, but not that of CIts391, regains most of the DNA-binding activity on cooling to $32^{\circ}C$ after preincubation at 42 to $52^{\circ}C$. All these data suggest that the 131st proline residue at the C-terminal half of CI, which changed to leucine in the CIts391, plays a crucial role in binding the L1 repressor to the cognate operator DNA, although the helix-turn-helix DNA-binding motif of the L1 repressor is located at its N-terminal end.

UNITARY INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • 호남수학학술지
    • /
    • 제31권3호
    • /
    • pp.421-428
    • /
    • 2009
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this paper, we showed the following : Let $\mathcal{L}$ be a subspace lattice acting on a Hilbert space $\mathcal{H}$ and let $X_i$ and $Y_i$ be operators in B($\mathcal{H}$) for i = 1, 2, ${\cdots}$. Let $P_i$ be the projection onto $\overline{rangeX_i}$ for all i = 1, 2, ${\cdots}$. If $P_kE$ = $EP_k$ for some k in $\mathbb{N}$ and all E in $\mathcal{L}$, then the following are equivalent: (1) $sup\;\{{\frac{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}:f{\in}H,n{\in}{\mathbb{N}},E{\in}\mathcal{L}}\}$ < ${\infty}$ range $\overline{rangeY_k}\;=\;\overline{rangeX_k}\;=\;\mathcal{H}$, and < $X_kf,\;X_kg$ >=< $Y_kf,\;Y_kg$ > for some k in $\mathbb{N}$ and for all f and g in $\mathcal{H}$. (2) There exists an operator A in Alg$\mathcal{L}$ such that $AX_i$ = $Y_i$ for i = 1, 2, ${\cdots}$ and AA$^*$ = I = A$^*$A.

NOTE ON SPECTRUM OF LINEAR DIFFERENTIAL OPERATORS WITH PERIODIC COEFFICIENTS

  • Jung, Soyeun
    • 충청수학회지
    • /
    • 제30권3호
    • /
    • pp.323-329
    • /
    • 2017
  • In this paper, by rigorous calculations, we consider $L^2({\mathbb{R}})-spectrum$ of linear differential operators with periodic coefficients. These operators are usually seen in linearization of nonlinear partial differential equations about spatially periodic traveling wave solutions. Here, by using the solution operator obtained from Floquet theory, we prove rigorously that $L^2({\mathbb{R}})-spectrum$ of the linear operator is determined by the eigenvalues of Floquet matrix.

NORMAL INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Jo, Young-Soo
    • 호남수학학술지
    • /
    • 제30권2호
    • /
    • pp.329-334
    • /
    • 2008
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, the following is proved: Let $\mathcal{L}$ be a subspace lattice on $\mathcal{H}$ and let X and Y be operators acting on a Hilbert space H. Let P be the projection onto the $\overline{rangeX}$. If PE = EP for each E ${\in}$ $\mathcal{L}$, then the following are equivalent: (1) sup ${{\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}}:f{\in}\mathcal{H},\;E{\in}\mathcal{L}}$ < ${\infty},\;\overline{rangeY}\;{\subset}\;\overline{rangeX}$, and there is a bounded operator T acting on $\mathcal{H}$ such that < Xf, Tg >=< Yf, Xg >, < Tf, Tg >=< Yf, Yg > for all f and gin $\mathcal{H}$ and $T^*h$ = 0 for h ${\in}\;{\overline{rangeX}}^{\perp}$. (2) There is a normal operator A in AlgL such that AX = Y and Ag = 0 for all g in range ${\overline{rangeX}}^{\perp}$.

HYPERCYCLIC OPERATOR WEIGHTED SHIFTS

  • Hazarika, Munmun;Arora, S.C.
    • 대한수학회보
    • /
    • 제41권4호
    • /
    • pp.589-598
    • /
    • 2004
  • We consider bilateral operator weighted shift T on $L^2$(K) with weight sequence ${[A_{n}]_{n=-{\infty}}}^{\infty}$ of positive invertible diagonal operators on K. We give a characterization for T to be hypercyclic, and show that the conditions are far simplified in case T is invertible.

SKEW-ADJOINT INTERPOLATION ON Ax-y IN $ALG\mathcal{L}$

  • Jo, Young-Soo;Kang, Joo-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권1호
    • /
    • pp.29-36
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. In this paper the following is proved: Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$, be the projection onto sp(x). If $P_xE=EP_x$ for each $ E \in \cal{L}$ then the following are equivalent. (1) There exists an operator A in Alg(equation omitted) such that Ax=y, Af = 0 for all f in ($sp(x)^\perp$) and $A=-A^\ast$. (2) (equation omitted)

  • PDF

THE MAXIMAL OPERATOR OF BOCHNER-RIESZ MEANS FOR RADIAL FUNCTIONS

  • Hong. Sung-Geum
    • 대한수학회보
    • /
    • 제38권1호
    • /
    • pp.93-100
    • /
    • 2001
  • Author proves weak type estimates of the maximal function associated with the Bochner-Riesz means while it is claimed p=2n/(n+1+$2\delta) and 0<\delta\leq(n-1)/2$ that the maximal function is bounded on L^p-{rad}$.

  • PDF

A Note on the Pettis Integral and the Bourgain Property

  • Lim, Jong Sul;Eun, Gwang Sik;Yoon, Ju Han
    • 충청수학회지
    • /
    • 제5권1호
    • /
    • pp.159-165
    • /
    • 1992
  • In 1986, R. Huff [3] showed that a Dunford integrable function is Pettis integrable if and only if T : $X^*{\rightarrow}L_1(\mu)$ is weakly compact operator and {$T(K(F,\varepsilon))|F{\subset}X$, F : finite and ${\varepsilon}$ > 0} = {0}. In this paper, we introduce the notion of Bourgain property of real valued functions formulated by J. Bourgain [2]. We show that the class of pettis integrable functions is linear space and if lis bounded function with Bourgain property, then T : $X^{**}{\rightarrow}L_1(\mu)$ by $T(x^{**})=x^{**}f$ is $weak^*$ - to - weak linear operator. Also, if operator T : $L_1(\mu){\rightarrow}X^*$ with Bourgain property, then we show that f is Pettis representable.

  • PDF

ON THE PETTIS-DIVISOR PROPERTY FOR DUNFORD-PETTIS OPERATORS

  • SUNG-JIN CHO;CHUN KEE PARK
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.775-780
    • /
    • 1998
  • In this paper it is shown that Dunford-Pettis operators obey the "Pettis-divisor property": if T is a Dunford-Pettis operator from $L_1$($\mu$) to a Banach space X, then there is a non-Pettis representable operator S : $L_1$($\mu$)longrightarrow$L_1$($\mu$) such that To S is Pettis representable.

  • PDF