• 제목/요약/키워드: $L_{18}$ orthogonal array

검색결과 35건 처리시간 0.021초

다구찌 방법을 이용한 전기자동차 구동계의 진동 억제 제어 (Suppression Control of the Drivetrain-Oscillations of an Electric Vehicle Using Taguchi Method)

  • 김호기
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.463-468
    • /
    • 2009
  • Torsional oscillations of the drivetrain in electric vehicles are generated under rapid driving conditions. These lead to an uncomfortable jerking of the vehicle and an increased stress of the mechanical components. To suppress torsional oscillations, the low pass and notch filters between the torque command from the acceleration pedal and electric motor input torque are suggested. The filter parameters are optimized based on Taguchi method with $L_{18}(3^5)$ orthogonal array. The signal to noise (S/N) ratio mainly depends on slew rate of motor input torque, damping ratio and natural frequency of notch filter. With the proposed suppression control scheme, the S/N ratio is shown to be increased by 4.7dB and the torque overshoot of the drive shaft is reduced to 30%.

전기자동차의 유럽 측면 충돌 특성 기초 연구 (I) (A Basic Study of the European Side Impact Characteristics of Electric Vehicle(I))

  • 조용범;고정한;신효철;변준형
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.173-180
    • /
    • 2000
  • European side impact analysis of an electric vehicle was done using robust design. Locations and section properties of some of the vehicle structure components which influence the european side impact characteristics were chosen as the main factors for the robust design. Eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the L18(21$\times$37) orthogonal array. It is shown that the sensitivities of the factors and the best combination of the factors can be obtained, and that the location of the main components were as much sensitive as the section properties of those. Also it is shown that the interactions were existed between some factors.

  • PDF

AISI 4340강의 방전가공에서 공정변수의 최적화 (Optimization of Process Parameters for AISI 4340 Steel in Electrical Discharge Machining)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.17-22
    • /
    • 2019
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. This present investigation details the determination of optimum process parameter to attain the better machining performance in EDM of AISI 4340 steel with graphite as a tool electrode. The experimental combinations are planned and analyzed by Taguchi's design of experiments approach. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The influence of process variables such as discharge current, pulse on and pulse off time, voltage and spark speed were investigated to control the various desired performance measures such as surface roughness. Analysis of Variance (ANOVA) has to be performed to know the magnitude of each factor. Investigations indicate that the surface roughness is strongly depend on pulsed current.

다구찌 방법을 이용한 시로코 홴의 최적설계에 관한 실험적 연구 (An Experimental Study on the Optimum Design of Sirocco Fan by Using Taguchi Method)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.761-768
    • /
    • 1999
  • This paper is studied to find the optimum condition of double-inlet Sirocco fan installed in an indoor PAC for low noise operation by the Taguchi method. The goal of this study is to obtain the best combination of each control factor which results in a desired flowrate of Sirocco fan with minimum variability. In this study, the parameter design of the Taguchi method is adopted for robust design by the dynamic characteristic analysis using orthogonal arrays and S/N ratios. The flowrate measurements are conducted by using a multiple-nozzle-type fan tester according to the orthogonal array L9($3^4$). The results of this study can be summarized as follows ; (i) The optimum condition of control factor is a set of where A is an inner to outer diameter ratio($D_1/D_2$), B is a width to outer diameter ratio($L/D_2$), C is a blade attachment angle(${\theta}$) and D is a number of blade(Z), (ii) The flowrate under the optimum condition satisfies the equation $y=0.0384{\cdot}M$ where M is a signal factor, namely number of revolution. The flowrate performance improves about 7.3% more largely as compared with the current condition, which results in about 35RPM reduction of number of revolution for the target flowrate $18.5m^3/min$, and (iii) The sensitivity analysis shows that the major factors in contribution to flowrate performance are A, B, and D ; the percentage contributions of each control factor are 44.01%(Z), 26.77%($D_1/D_2$) and 20.42%($L/D_2$).

STS316L 강관의 수평자세 용접을 위한 GTAW 용접조건의 최적화 (Optimization of GTAW Parameters for Horizontal Welding of a STS316L Pipe)

  • 이형근;방경식
    • Journal of Welding and Joining
    • /
    • 제33권5호
    • /
    • pp.47-52
    • /
    • 2015
  • In this study, it was tried to analyze the effects of welding parameters on the weld penetration and aspect ratio when a STS316L pipe was welded in a horizontal position by GTAW. Experiments were systematically designed using a L18 orthogonal array, and the effects of welding parameters were statistically analyzed by ANOVA(Analysis of Variance). The shielding gas type has the largest effect on both the penetration and aspect ratio. The welding current type and shielding gas flow rate have a little effect on the penetration, whereas the electrode tip angle has a little effect on the aspect ratio. When welded at a selected welding condition, which is composed of He shielding gas, pulse current of 300/45 A, electrode tip angle of 90o, and shielding gas flow rate of 30 l/min, the estimated interval at least 95 % confidence was $1.99{\pm}0.18mm$ for the penetration and $0.31{\pm}0.04$ for the aspect ratio. From the confirmation experiments, the average penetration and aspect ratio were well agreed with the estimation as 1.96 mm and 0.30, respectively. Additionally, the effects of the welding speed and welding current on the penetration and aspect ratio were experimented and analyzed by linear regression. The penetration was linearly increased with the decrease of the welding speed and with the increase of the welding current, but the aspect ratio showed a tendency to a little decrease with the increase of both the welding speed and current.

차체 외판 부품의 내덴트성 향상을 위한 고강도 강판의 성형에 관한 연구 (Forming of Automotive Outer Body Panel using High Strength Steel Sheet for Improving Dent Resistance)

  • 김태정;김익수;정연일;윤치상;임종대
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the thirty six cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the best improvement of dent resistance.

  • PDF

Numerical Investigation on Hydrodynamic Characteristics of a Centrifugal Pump with a Double Volute at Off-Design Conditions

  • Shim, Hyeon-Seok;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권3호
    • /
    • pp.218-226
    • /
    • 2017
  • Severe radial thrust under off-design operating conditions can be a harmful factor for centrifugal pumps. In the present work, effects of geometry of a double volute casing on the hydrodynamic performance of a centrifugal pump have been investigated focusing on off-design conditions. Three-dimensional steady Reynolds-averaged Navier-Stokes analysis was carried out by using shear stress transport turbulence model. Numerical results for the hydrodynamic performance of the centrifugal pump were validated compared with experimental data. The hydraulic efficiency and radial thrust coefficient were used as performance parameters to evaluate the hydrodynamic characteristics of the centrifugal pump. The cross-sectional area ratio of the volute casing, the expansion coefficient of the rib structure, the distance between the rib starting point and volute entrance, and radius and width of the volute entrance, and length of the rib structure, were selected as geometric parameters. Results of the parametric study show that the performance parameters are significantly affected by the geometric variables and operating conditions. Optimal configurations of the double volute casing based on the design of experiments technique show outstanding performance in terms of the efficiency and radial thrust coefficient.

다구찌 방법을 이용한 신발 아웃솔 펠레타이징 기계 절단부의 강건설계 (Taguchi-based robust design for the footwear outsole pelletizing machine cutter)

  • 권오훈;구평회;권혁무
    • 품질경영학회지
    • /
    • 제44권4호
    • /
    • pp.935-949
    • /
    • 2016
  • Purpose: This study attempts to find out the optimum condition of the rotary cutter making pellet in the footwear outsole process. The pellets are used in the process of outsole rubber fabrication to reduce cycle time and save raw material. Methods: Computer simulations are used to analyze the maximum stress in the rotary cutter after designing a variety of cutter shapes. Taguchi method is used to identify the robust condition of the cutter. In $L_{18}$ orthogonal array, the control factors such as knife width, twisted angle, number of knives, diameter, knife depth and supported angle are considered and noise factors like assembly tolerance and amount of antifriction are allocated. Results: It is found that the most important factors to reduce maximum stress in the cutter are supported angle and diameter. Using Tacuchi's results, we can reduce 70% cycle time and 9% raw material compared to the traditional method using cutting die. Conclusion: When designing the rotary cutter, the best conditions are the diameter at its maximum allowable value and supported angle in the boundary of machine inner space.

파라미터 해석을 통한 차량 성능 예측 기법 연구 (Study on the Prediction Technique of Vehicle Performance Using Parameter Analysis)

  • 김기창;김찬묵;김진택
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.995-1000
    • /
    • 2010
  • With the development of the auto industry, the automobile manufacturers demand to shorten development period and reduce the cost. Compared with the traditional method, applying the virtual prototype is more economical. This paper presents a method for parameters sensitivity analysis and optimizing the performance of vehicle noise and vibration. The existing design processes were repeatedly analyzed with a focus on vehicle performance to decide the design parameters of dimension, thickness, mounting type of body and chassis systems in the vehicle development period. This paper describes the prediction technique of vehicle performance using L18 orthogonal array layout, quality deviation analysis and parameter sensitivity analysis for robust design. This paper analyzed the performance correlation equation through the frequency and sensitivity database according to a design factor change. The new concept is that the performance prediction is possible without repeated activities of test and analysis. This paper described the parameter analysis applications such as bush dynamic stiffness and bush void direction of rear suspension. Design engineer could efficiently decide the design variable using parameter analysis database in early design stage. These improvements can reduce man hour and test development period as well as to achieve stable NVH performance.

내덴트성 향상을 위한 고강도 도어 외판 개발 (Development of Door Outer Panel using High Strength Steel Sheet for Improving Dent Resistance)

  • 김익수;김태정;정연일;윤치상;임종대
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.254-259
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the eighteen cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the optimal improvement of dent resistance.