• Title/Summary/Keyword: $K_2Ti_2O_5$

Search Result 2,024, Processing Time 0.034 seconds

A Study on the Acid Property and the Activity of Xylene Oxidation Catalyst (자일렌 산화반응 촉매의 산특성과 반응성에 관한 연구)

  • Kim, Taek-Joong;Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.330-339
    • /
    • 1991
  • The acid properties of $V_2O_5-TiO_2/SiO_2$ catalysts and the partial oxidation of o-xylene into phthalic anhydride had been investigated in order to relate the acid property of catalyst to the catalytic activity. $V_2O_5$ had both weak (V=O) and strong (V-O-V) acid sites which gave pyridine desorption peaks at $230^{\circ}C$ and $300^{\circ}C$, respectively, and the amount of weak acid sites at $230^{\circ}C$ decreased with the increase of calcination temperature. On the other hand, the amount of weak acid sites increased considerably by increasing the amount of $TiO_2$ to the $V_2O_5-TiO_2/SiO_5$, and the maximum value was shown at 20 and higher mole % of $TiO_2$ with respect to $SiO_2$. In the oxidation of o-xylene, $V_2O_5-TiO_2/SiO_2$ enhandced more the total conversion and the selectivity to phthalic anhydride than $V_2O_5/SiO_2$, and the higher $TiO_2$ ratio to $V_2O_5$ increased the total conversion but could not change the selectivity to phthalic anhydride. Weak acid sites (V=O) led o-xylene to partial oxidation producing phthalic anhydride by adsorbing o-xylene weakly, while acid sites (V-O-V) led it to total oxidation producing CO and $CO_2$ by adsorbing it strongly.

  • PDF

Correlation between Physicochemical Properties of Various Commercial TiO2 Supports and NH3-SCR Activities of Ce/Ti Catalysts (다양한 상용 TiO2 담체의 물리화학적 특성과 Ce/Ti 촉매의 SCR 반응활성과의 상관성 연구)

  • Kwon, Dong Wook;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.193-198
    • /
    • 2015
  • Ceria supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method. We confirmed that the correlation between physicochemical properties of $TiO_2$ supports and SCR activities. Physicochemical properties of the various $TiO_2$ were evaluated using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), and pH analysis. Ce/Ti catalyst exhibited different SCR activities with respect to physicochemical properties of $TiO_2$. An excellent activity was obtained as the surface area of $TiO_2$ increased. In the case of CeOx surface density, the excellent activity in a range of $2.5{\sim}14.5CeOx/nm^2$ was achieved and the activity tended to decrease above $14.5CeOx/nm^2$. The O/Ti mole ratio of $TiO_2$ in the range of 1.32 to 1.79 showed an excellent SCR activity. It was also confirmed that the pH of the $TiO_2$ has no effects on the SCR activity. In order to achieve excellent SCR activities, ceria oxide should be supported on $TiO_2$ possessing a high specific surface area and certain O/Ti mole ratio. In addition, the catalyst with the low CeOx surface density resulted from the high dispersed ceria oxide should be prepared.

Photodecomposition of Concentrated Ammonia over Nanometer-sized TiO2, V-TiO2, and Pt/V-TiO2 Photocatalysts

  • Choi, Hyung-Joo;Kim, Jun-Sik;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.581-588
    • /
    • 2007
  • To enhance the photodecomposition of concentrated ammonia into N2, Pt/V-TiO2 photocatalysts were prepared using solvothermal and impregnation methods. Nanometer-sized particles of 0.1, 0.5 and 1.0 mol% V-TiO2 were prepared solvothermally, and then impregnated with 1.0 wt% Pt. The X-ray diffraction (XRD) peaks assigned to V2O5 at 30.20 (010) and Pt metal at 39.80 (111) and 46.20 (200) were seen in the 1.0 wt% Pt/ 10.0 mol% V-TiO2. The particle size increased in the order: pure TiO2, V-TiO2 and Pt/V-TiO2 after thermal treatment at 500 °C, while their surface areas were in the reverse order. On X-ray photoelectron spectroscopy (XPS), the bands assigned to the Ti2p3/2 and Ti2p1/2 of Ti4+-O were seen in all the photocatalysts, and the binding energies increased in the order: TiO2 < Pt/V-TiO2 < V-TiO2. The XPS bands assigned to the V2p3/2 (517.85, 519.35, and 520.55 eV) and V2p1/2 (524.90 eV) in the V3+, V4+ and V5+ oxides appeared over V-TiO2, respectively, while the band shifted to a lower binding energy with Pt impregnation. The Pt components of Pt/ V-TiO2 were identified at 71.60, 73.80, 75.00 and 76.90 eV, which were assigned to metallic Pt 4f7/2, PtO 4f7/2, PtO2 4f7/2, and PtO 4f5/2, respectively. The UV-visible absorption band shifted closer towards the visible region of the spectrum in V-TiO2 than in pure TiO2 and; surprisingly, the Pt/V-TiO2 absorbed at all wavelengths from 200 to 800 nm. The addition of vanadium generated a new acid site in the framework of TiO2, and the medium acidic site increased with Pt impregnation. The NH3 decomposition increased with the amount of vanadium compared to pure TiO2, and was enhanced with Pt impregnation. NH3 decomposition of 100% was attained over 1.0 wt% Pt/1.0 mol% V-TiO2 after 80 min under illumination with 365 nm light, although about 10% of the ammonia was converted into undesirable NO2 and NO. Various intermediates, such as NO2, -NH2, -NH and NO, were also identified in the Fourier transform infrared (FT-IR) spectra. From the gas chromatography (GC), FT-IR and GC/mass spectroscopy (GC/MS) analyses, partially oxidized NO and NO2 were found to predominate over V-TiO2 and pure TiO2, respectively, while both molecules were reduced over Pt/V-TiO2.

Microwave dielectric properties of 0.96Mg$TiO_3$-0.04Sr$TiO_3$ ceramics with $V_2O_5$ ($V_2O_5$ 첨가에 따른 0.96Mg$TiO_3$-0.04Sr$TiO_3$ 세라믹스의 마이크로파 유전특성)

  • Nam, Gyu-Bin;Lee, Moon-Kee;Kim, Kang;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1485-1487
    • /
    • 2002
  • The 0.96Mg$TiO_3$-0.04Sr$TiO_3$ ceramics with $V_2O_5$(5wt%) were prepared by the conventional mixed oxide method. The structural properties were investigated with sintering temperature by XRD and SEM. According to the X-ray diffraction patterns of the 0.96Mg$TiO_3$-0.04Sr$TiO_3$ceramics with $V_2O_5$(5wt%), the ilmenite $MgTiO_3$ and perovskite $SrTiO_3$ structures were coexisted and secondary phase $MgTi_2O_5$ were appeared. Increasing the sintering temperature, the grain size was increased and three types of grains were exhibited: larger circular grain, small square grain and lapth-shaped grain. In the case of 0.96Mg$TiO_3$-0.04Sr$TiO_3$ ceramics with $V_2O_5$(10wt%), dielectric constant, quality factor and temperature coefficient of resonant frequency were $15.24{\sim}18.55$, $22,890{\sim}42,100$GHz, -24.5${\sim}$+2.414ppm/$^{\circ}C$, respectively.

  • PDF

NOx removal of Mn-Cu-TiO2 and V/TiO2 catalysts for the reaction conditions (반응조건에 대한 Mn-Cu-TiO2촉매와 V/TiO2촉매의 탈질 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.713-719
    • /
    • 2016
  • The NOx conversion properties of Mn-Cu-$TiO_2$ and $V_2O_5$/$TiO_2$ catalysts were studied for the selective catalytic reduction (SCR) of NOx with ammonia. The performance of the catalysts was investigated in terms of their $NOx$ conversion activity as a function of the reaction temperature and space velocity. The activity of the Mn-Cu-$TiO_2$ catalyst decreased with increasing reaction temperature and space velocity. However, the activity of the $V_2O_5$/$TiO_2$ catalyst increased with increasing reaction temperature. High activity of the Mn-Cu-$TiO_2$ catalyst was observed at temperatures below $200^{\circ}C$. H2-TPR and XPS analyses were conducted to explain these results. It was found that the activity of the Mn-Cu-$TiO_2$ catalyst was influenced by the thermal shock caused by the change of the initial reaction temperature, whereas the $V_2O_5$/$TiO_2$ catalyst was not affected by the initial reaction temperature. In the case of catalyst C, the $NO_x$ conversion efficiency decreased with increasing space velocity. The decrease in the $NO_x$ conversion efficiency with increasing space velocity was much less for catalyst D than for catalyst C.

Influence of TiO2 Buffer Layer on the Electrical and Optical Properties of IGZO/TiO2 Bi-layered Films (TiO2 완충층이 IGZO/TiO2 이중층 박막의 전기적, 광학적 성질에 미치는 영향)

  • Moon, Hyun-Joo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.291-295
    • /
    • 2015
  • IGZO single layer and $IGZO/TiO_2$ bi-layered films were deposited on glass substrate at room temperature with radio frequency magnetron sputtering to investigate the effect of $TiO_2$ buffer layer on the electrical and optical properties of the films. For all deposition, the thickness of IGZO and $TiO_2$ Buffer layer was kept at 100 and 5 nm, respectively. In a comparison of figure of merit, IGZO films with a 5-nm-thick $TiO_2$ buffer layer show the higher figure of merit ($8.40{\times}10^{-5}{\Omega}^{-1}$) than that of the IGZO single layer films ($6.23{\times}10^{-5}{\Omega}^{-1}$) due to the enhanced optical transmittance and the decreased sheet resistance of the films. The observed results mean that a 5 nm thick $TiO_2$ buffer layer in the $IGZO/TiO_2$ films results in better electrical and optical performance than conventional IGZO single layer films.

Effects of $Nd_2O_3$ and $TiO_2$ Addition on the Microstructures and Microwave Dielectric Properties of $BaO-Nd_2O_3-TiO_2$ System

  • Kim, Tea-Hong;Park, Jung-Rae;Lee, Suk-Jin;Sung, Hee-Kyung;Lee, Sang-Seok;Choy, Tae-Goo
    • ETRI Journal
    • /
    • v.18 no.1
    • /
    • pp.15-27
    • /
    • 1996
  • The effects of $Nd_2O_3$ and $TiO_2$ addition on the microstructures and microwave dielectic properties of $BaO-Nd_2O_3-TiO_2$ system were investigated. $BaNd_2Ti_4O_{12}$ or $BaNd_2Ti_{5}O_{14}$ phases were observed for compositions based on BaO/$Nd_2O_3$ = 1 ratio. The compositions deviated from $BaO/Nd_2O_3=1$ ratio were composed of major phases of $BaNd_2Ti_4O_{12}$ or $BaNd_2Ti_5O_{14}$, and the compound of $Nd_2O_3$ and $TiO_2(Nd_2Ti_2O_7)$ or that of BaO and $TiO_2(BaTi_4O_9)$. The microstructure of ceramic with $BaO{\cdot}Nd_2O_3{\cdot}4TiO_2$ composition varied from spherical grains to needlelike grains with increasing sintering temperature. With increasing $Nd_2O_3$, the optimum sintering temperature with maximum density increased, and the dielectric constant(${\varepsilon}_r$) and quality factor(Q) decreased due to the formation of secondary phases. With increasing $TiO_2$, the optimum sintering temperature and the dielectric constant decreased with increased Q value. And the temperature coefficient of resonant frequency, ${\tau}_f$ shifted toward positive direction. The dielectric ceramics with $BaO/Nd_2O_3=1$ showed Q values of above 2000 and dielectric constants of above 80 at 3GHz.

  • PDF

Synthesis of SnO2-TiO2-V2O5 System Yellow Pigment (SnO2-TiO2-V2O5계의 노랑안료 합성)

  • Joo, In-Don;Hwang, Dong-Ha;Lee, Hyun-Soo;Park, Joo-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.639-642
    • /
    • 2009
  • The research was performed to find out the optimum firing condition for the $SnO_2-TiO_2-V_2O_5$ system yellow pigment. The pigment based on $SnO_2-V_2O_5$ system showed very intense yellow color and it was used widely in ceramics industry. Synthesized pigment, with partial substitutions of $SnO_2\;by\;TiO_2$, was fired at $1300{^{\circ}C}$ soaking 1h and it showed bright yellow color. $SnO_2-TiO_2-V_2O_5$ system was very more intensive changes in yellow color by colorimetric value $b^*$ than $SnO_2-V_2O_5$ system. Synthesized yellow pigments were characterized by X-ray diffraction (XRD), FT-IR, and UV-vis spectroscopy. The best composition for yellow pigment was 93:7:0.5(mole%) for $SnO_2-V_2O_5-TiO_2$. The measurement of CIE $L^*a^*b^*$ of pigment was $L^*(78.82),\;a^*(-4.88)\;and\;b^*$(59.25).

Enhancement in the Photocatalytic Activity of Au@TiO2 Nanocomposites by Pretreatment of TiO2 with UV Light

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1753-1758
    • /
    • 2012
  • A novel, efficient and controlled protocol for the synthesis and enhanced photocatalytic activity of $Au@TiO_2$ nanocomposite is developed. $TiO_2$ (P25) was pretreated by employing UV light (${\lambda}$ = 254 nm) and the pretreated $TiO_2$ was uniformly decorated by gold nanoparticles (AuNPs) in presence of sodium citrate and UV light. UV pretreatment makes the $TiO_2$ activated, as electrons were accumulated within the $TiO_2$ in the conduction band. These accumulated electrons facilitate the formation of AuNPs which were of very small size (2-5 nm), similar morphology and uniformly deposited at $TiO_2$ surface. It leads to formation of stable and crystalline $Au@TiO_2$ nanocomposites. The rapidity (13 hours), monodispersity, smaller nanocomposites and easy separation make this protocol highly significant in the area of nanocomposites syntheses. As-synthesized nanocomposites were characterized by TEM, HRTEM, TEM-EDX, SAED, XRD, UV-visible spectrophotometer and zeta potential. Dye degradation experiments of methyl orange show that type I ($Au@TiO_2$ nanocomposites in which $TiO_2$ was pretreated with UV light) has enhanced photocatalytic activity in comparison to type II ($Au@TiO_2$ nanocomposites in which $TiO_2$ was not pretreated with UV light) and $TiO_2$ (P25). This shows that pretreatment of $TiO_2$ provides type I a better catalytic activity.

Solid-state reaction kinetics for the formation of aluminium titanate ($AL_2TiO_5$) from amorphous $TiO_2$ and $\alpha-AL_2O_3$ (비정질 $TiO_2$$\alpha-AL_2O_3$부터 $AL_2TiO_5$를 합성하기 위한 고체상태 반응속도)

  • Ik Jin Kim;Oh Seong Kweon;Young Shin Ko;Constantin Zografou
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.259-270
    • /
    • 1997
  • Reaction kinetics for the solid-state reaction of $\alpha-Al_2O_3$ with amorphous $TiO_2$ to produce $Al_2TiO_5$ (Tialite) was studied in the temperature range of $1200~1300^{\circ}C$. Rate of kinetic reaction were determined by using $TiO_2$-coated $Al_2O_3$ compact containing 50 mol% $TiO_2$ and heating the reactant mixtures in MgO at definite temperature for various times. Amount of products and unreacted reactants were determined by X-ray diffractometry. Data from the volume fraction and ratio of peak intensities of $\beta-Al_2TiO_5$ indicated that the reaction of $\alpha-Al_2O_3$ with $TiO_2$ to form pseudobrookite starts between 1280 and $1300^{\circ}C$. The activation energy for solid-state reaction was determined by using the Arrhenius equation ; The activation energy was 622.4 kJ/mol.

  • PDF