Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.4.581

Photodecomposition of Concentrated Ammonia over Nanometer-sized TiO2, V-TiO2, and Pt/V-TiO2 Photocatalysts  

Choi, Hyung-Joo (School of Environmental Applied Chemistry, KyungHee University)
Kim, Jun-Sik (Environment and Resources Group, Korea Research Institute of Chemical Technology)
Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
Publication Information
Abstract
To enhance the photodecomposition of concentrated ammonia into N2, Pt/V-TiO2 photocatalysts were prepared using solvothermal and impregnation methods. Nanometer-sized particles of 0.1, 0.5 and 1.0 mol% V-TiO2 were prepared solvothermally, and then impregnated with 1.0 wt% Pt. The X-ray diffraction (XRD) peaks assigned to V2O5 at 30.20 (010) and Pt metal at 39.80 (111) and 46.20 (200) were seen in the 1.0 wt% Pt/ 10.0 mol% V-TiO2. The particle size increased in the order: pure TiO2, V-TiO2 and Pt/V-TiO2 after thermal treatment at 500 °C, while their surface areas were in the reverse order. On X-ray photoelectron spectroscopy (XPS), the bands assigned to the Ti2p3/2 and Ti2p1/2 of Ti4+-O were seen in all the photocatalysts, and the binding energies increased in the order: TiO2 < Pt/V-TiO2 < V-TiO2. The XPS bands assigned to the V2p3/2 (517.85, 519.35, and 520.55 eV) and V2p1/2 (524.90 eV) in the V3+, V4+ and V5+ oxides appeared over V-TiO2, respectively, while the band shifted to a lower binding energy with Pt impregnation. The Pt components of Pt/ V-TiO2 were identified at 71.60, 73.80, 75.00 and 76.90 eV, which were assigned to metallic Pt 4f7/2, PtO 4f7/2, PtO2 4f7/2, and PtO 4f5/2, respectively. The UV-visible absorption band shifted closer towards the visible region of the spectrum in V-TiO2 than in pure TiO2 and; surprisingly, the Pt/V-TiO2 absorbed at all wavelengths from 200 to 800 nm. The addition of vanadium generated a new acid site in the framework of TiO2, and the medium acidic site increased with Pt impregnation. The NH3 decomposition increased with the amount of vanadium compared to pure TiO2, and was enhanced with Pt impregnation. NH3 decomposition of 100% was attained over 1.0 wt% Pt/1.0 mol% V-TiO2 after 80 min under illumination with 365 nm light, although about 10% of the ammonia was converted into undesirable NO2 and NO. Various intermediates, such as NO2, -NH2, -NH and NO, were also identified in the Fourier transform infrared (FT-IR) spectra. From the gas chromatography (GC), FT-IR and GC/mass spectroscopy (GC/MS) analyses, partially oxidized NO and NO2 were found to predominate over V-TiO2 and pure TiO2, respectively, while both molecules were reduced over Pt/V-TiO2.
Keywords
V-$TiO_2$; Pt/V-$TiO_2$; $NH_3$ photodecomposition; NO; $NO_2$;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Tang, Y.; Zhang, L.; Wang, Y.; Zhou, Y.; Gao, Y.; Liu, C.; Xing, W.; Lu, T. J. Power Sources 2006, 162, 124   DOI   ScienceOn
2 Zhou, G.-W.; Lee, D. K.; Kim, Y. H.; Kim, C. W.; Kang, Y. S. Bull. Korean Chem. Soc. 2006, 27, 368   DOI   ScienceOn
3 Riggan, P. I.; Lockwood, R. N.; Lopez, E. N. Environ. Sci. Technol. 1985, 19, 971
4 Son, Y.-H.; Jeon, M.-K.; Ban, J.-Y.; Kang, M.; Choung, S.-J. J. Ind. Eng. Chem. 2005, 11, 938
5 Mozzanega, H.; Herrmann, J.-M.; Pichat, P. J. Phys. Chem. 1979, 83, 2251
6 Park, S.-H.; Lee, S.-C.; Kang, M.; Choung, S.-J. J. Ind. Eng. Chem. 2004, 10, 972
7 Yeo, M.-K.; Kang, M. Water Research 2006, 40, 1906   DOI   ScienceOn
8 Kang, M. J. Mol. Catal. 2003, 197, 173   DOI   ScienceOn
9 Wu, N.-L.; Lee, M.-S.; Pon, Z.-J.; Hsu, J.-Z. J. Photochem. Photobiol. A: Chem. 2004, 163, 277   DOI   ScienceOn
10 Liu, Q.; Wu, X.; Wang, B.; Liu, Q. Mater. Res. Bull. 2002, 37, 2255   DOI   ScienceOn
11 Kang, M.; Lee, S.-Y.; Chung, C.-H.; Cho, S. M.; Han, G. Y.; Kim, B.-W.; Yoon, K. J. J. Photochem. Photobiol. A: Chem. 2001, 144, 185
12 Yu, J.; Zhao, X.; Zhao, Q.; Wang, G.. Mater. Chem. Phys. 2001, 68, 253   DOI   ScienceOn
13 Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; Gryse, R. D. J. Electron. Spectrosc. 2004, 135, 167   DOI   ScienceOn
14 Li, Q.; Wang, K.; Zhang, S.; Yang, J.; Jin, Z. J. Mol. Catal. A: Chem. 2006, 258, 83   DOI   ScienceOn
15 Kang, M.; Choung, S. J.; Park, J. Y. Catalysis Today 2003, 87, 87   DOI   ScienceOn
16 Jung, O.-J.; Kim, S.-H.; Cheong, K.-H.; Li, W.; Saha, S. I. Bull. Korean Chem. Soc. 2003, 24, 49   DOI   ScienceOn
17 Kang, M. Appl. Catal. B: Environ. 2002, 37, 187   DOI   ScienceOn
18 Lee, J. H.; Nam, W. S.; Kang, M.; Han, G. Y.; Kim, M.-S.; Ogino, K.; Miyata, S.; Choung, S.-J. Appl. Catal. A: General 2003, 244, 49   DOI   ScienceOn
19 Yu, J.; Zhao, X. Meter. Res. Bull. 2001, 36, 97   DOI   ScienceOn
20 Hattori, A.; Kawahara, T.; Suzuki, F.; Tada, H.; Ito, S. J. Colloid Interf. Sci. 2000, 232, 410   DOI   ScienceOn
21 Chen, M.-L.; Bae, J.-S.; Oh, W.-C. Bull. Korean Chem. Soc. 2006, 27, 1423   DOI   ScienceOn
22 Kang, M.; Choi, D.-H.; Choung, S.-J. J. Ind. Eng. Chem. 2005, 11, 240