• Title/Summary/Keyword: $K_{Ca}$ channels

Search Result 360, Processing Time 0.022 seconds

Influence of Bradykinin on Catecholamine Release from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Kim, Il-Hwan;Na, Gwang-Moon;Kang, Moo-Jin;Kim, Ok-Min;Choi, Deok-Ho;Ki, Young-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.231-238
    • /
    • 2003
  • The present study was undertaken to investigate the effect of bradykinin on secretion of catecholamines (CA) evoked by stimulation of cholinergic receptors and membrane depolarization from the isolated perfused model of the rat adrenal glands, and to elucidate its mechanism of action. Bradykinin $(3{\times}10^{-8}M)$ alone produced a weak secretory response of the CA. however, the perfusion with bradykinin $(3{\times}10^{-8}M)$ into an adrenal vein of the rat adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}M)$, excess $K^+$ ($5.6{\times}10^{-2}M$, a membrane depolarizer), DMPP ($10^{-4}$ M, a selective neuronal nicotinic agonist) and McN-A-343 ($10^{-4}$ M, a selective M1-muscarinic agonist). Moreover, bradykinin ($3{\times}10^{-8}$ M) in to an adrenal vein for 90 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels. However, in the presence of $(N-Methyl-D-Phe^7)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_2$-bradykinin receptor, bradykinin no longer enhanced the CA secretion evoked by Ach and high potassium whereas the pretreatment with Lys-$(des-Arg^9,\;Leu^9)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_1$-bradykinin receptor did fail to affect them. Furthermore, the perfusion with bradykinin $(3{\times}10^{-6}M)$ into an adrenal vein of the rabbit adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by excess $K^+$ $(5.6{\times}10^{-2}M)$. Collectively, these experimental results suggest that bradykinin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization through the activation of $B_2$-bradykinin receptors, not through $B_1$-bradykinin receptors. This facilitatory effect of bradykinin seems to be associated to the increased $Ca^{2+}$ influx through the activation of the dihydropyridine L-type $Ca^{2+}$ channels.

Role of Stretch-Activated Channels in Stretch-Induced Changes of Electrical Activity in Rat Atrial Myocytes

  • Youm, Jae-Boum;Jo, Su-Hyun;Leem, Chae-Hun;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • We developed a cardiac cell model to explain the phenomenon of mechano-electric feedback (MEF), based on the experimental data with rat atrial myocytes. It incorporated the activity of ion channels, pumps, exchangers, and changes of intracellular ion concentration. Changes in membrane excitability and $Ca^{2+}$ transients could then be calculated. In the model, the major ion channels responsible for the stretch-induced changes in electrical activity were the stretch-activated channels (SACs). The relationship between the extent of stretch and activation of SACs was formulated based on the experimental findings. Then, the effects of mechanical stretch on the electrical activity were reproduced. The shape of the action potential (AP) was significantly changed by stretch in the model simulation. The duration was decreased at initial fast phase of repolarization (AP duration at 20% repolarization level from 3.7 to 2.5 ms) and increased at late slow phase of repolarization (AP duration at 90% repolarization level from 62 to 178 ms). The resting potential was depolarized from -75 to -61 mV. This mathematical model of SACs may quantitatively predict changes in cardiomyocytes by mechanical stretch.

Diclofenac, a Non-steroidal Anti-inflammatory Drug, Inhibits L-type $Ca^{2+}$ Channels in Neonatal Rat Ventricular Cardiomyocytes

  • Yarishkin, Oleg V.;Hwang, Eun-Mi;Kim, Dong-Gyu;Yoo, Jae-Cheal;Kang, Sang-Soo;Kim, Deok-Ryoung;Shin, Jae-Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang;Kang, Da-Won;Han, Jae-Hee;Park, Jae-Yong;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.437-442
    • /
    • 2009
  • A non-steroidal anti-inflammatory drug (NSAID) has many adverse effects including cardiovascular (CV) risk. Diclofenac among the nonselective NSAIDs has the highest CV risk such as congestive heart failure, which resulted commonly from the impaired cardiac pumping due to a disrupted excitationcontraction (E-C) coupling. We investigated the effects of diclofenac on the L-type calcium channels which are essential to the E-C coupling at the level of single ventricular myocytes isolated from neonatal rat heart, using the whole-cell voltage-clamp technique. Only diclofenac of three NSAIDs, including naproxen and ibuprofen, significantly reduced inward whole cell currents. At concentrations higher than $3\;{\mu}M$, diclofenac inhibited reversibly the $Na^+$ current and did irreversibly the L-type $Ca^{2+}$ channels-mediated inward current $(IC_{50}=12.89\pm0.43\;{\mu}M)$ in a dose-dependent manner. However, nifedipine, a well-known L-type channel blocker, effectively inhibited the L-type $Ca^{2+}$ currents but not the $Na^+$ current. Our finding may explain that diclofenac causes the CV risk by the inhibition of L-type $Ca^{2+}$ channel, leading to the impairment of E-C coupling in cardiac myocytes.

Insect GPCRs and TRP Channels: Putative Targets for Insect Repellents

  • Kim, Sang Hoon
    • Interdisciplinary Bio Central
    • /
    • v.5 no.3
    • /
    • pp.6.1-6.7
    • /
    • 2013
  • Many insects such as mosquitoes cause life-threatening diseases such as malaria, yellow fever and West Nile virus. Malaria alone infects 500 million people annually and causes 1-3 million death per year. Volatile insect repellents, which are detected through the sense of smell, have long been used to protect humans against insect pests. Antifeed-ants are non-volatile aversive compounds that are detected through the sense of taste and prevent insects from feeding on plants. The molecular targets and signaling path-ways required for sensing insect repellents and antifeedants are poorly understood. Transient Receptor Potential (TRP) Ca2+-permeable cation channels exist in organisms ranging from C. elegans to D. melanogaster and Homo sapiens. Drosophila has 13 family members, which mainly function in sensory physiology such as vision, thermotaxis and chemotaxis. G protein-coupled receptors (GPCRs) initiate olfactory signaling cascades in mammals and in nematodes C.elegans. However, the mechanisms of G protein signaling cascades in insect chemosensation are controversial. In this review, I will discuss the putative roles of G protein-coupled receptors (GPCRs) and Transient Receptor Potential (TRP) channels as targets for insect repellents.

Ginsentology I: Differential Ca2+ Signaling Regulations by Ginsenosides in Neuronal and Non-neuronal cells

  • Lee, Jun-Ho;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • One of the various signaling agents in the animal cells is the simple ion called calcium, $Ca^{2+}$.$Ca^{2+}$ controls almost everything that animals do, including fertilization, secretion, metabolism, muscle contractions, heartbeat, learning, memory stores, and more. To do all of this, $Ca^{2+}$ acts as an intracellular messenger, relaying information within cells to regulate their activity. In contrast, the maintenance of intracellular high $Ca^{2+}$ concentrations caused by various excitatory agents or toxins can lead to the disintegration of cells (necrosis) through the activity of $Ca^{2+}$-sensitive protein-digesting enzymes. High concentrations of calcium have also been implicated in the more orderly programs of cell death known as apoptosis. Because this simple ion, acts as an agent for cell birth, life and death, to coordinate all of these functions, $Ca^{2+}$ signalings should be regulated precisely and tightly. Recent reports have shown that ginsenosides regulate directly and indirectly intracellular $Ca^{2+}$ level with differential manners between neuronal and non-neuronal cells. This brief review will attempt to survey how ginsenosides differentially regulate intracellular $Ca^{2+}$ signaling mediated by various ion channels and receptor activations in neuronal and non-neuronal cells.

LIGHT DEPENDENT CHANNELS AND EXCHANGER IN THE INTERNAL LIMITING MEMBRANE OF VERTEBRATE EYE

  • Hyuk Jung;Kim, You-Young
    • Journal of Photoscience
    • /
    • v.6 no.2
    • /
    • pp.77-83
    • /
    • 1999
  • Calcium has a variety of functions in neuron and muscle cells and blood clotting, especially in the visual system where dark adapted rods cotransport with Na$\^$+/ into the cell. An influx of Ca$\^$++/ flows out of the cell through the Na$\^$+/-Ca$\^$++/ exchanger. By using a modified Using chamber in order to bring in vivo environment close, we have known that Ca$\^$++/ blocks the activity of guanylate cyclase, in consequence, having an effect on the amplitude of electroretinogram (ERG). We have measured the Ca$\^$++/, K$\^$+/, and Na$\^$+/ concentration in dark and light adapted bullfrog's (Rana catesbeiana) vitreous humor. The calcium concentration of the light adapted bullfrog's vitreous humor was higher than that of the dark adapted bullfrog's vitreous humor This means that ion activity between the photoreceptor and vitreous humor side is light dependent and we have found that a Ca$\^$++/ channel and Ca$\^$++/K$\^$+/ exchanger exist in the vitreous humor side. Taken together permeability of Ca$\^$++/, K$\^$+/ and K$\^$+/ ion internal limiting membrane faced in the vitreous humor side has light-dependent activity during the illumination.

  • PDF

Inhibitory Mechanism of Polyphenol Compounds Isolated from Red Wine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Ko, Woo-Seok;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.147-160
    • /
    • 2008
  • The present study was designed to examine effects of polyphenolic compounds isolated from red wine (PCRW) on the release of catecholamines (CA) from the isolated perfused model of the rat adrenal medulla, and to clarify its mechanism of action. PCRW (20${\sim}$180 ${\mu}$g/mL), given into an adrenal vein for 90 min, caused inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}$M) in dose- and time-dependent fashion. PCRW itself did not affect basal CA secretion (data not shown). Following the perfusion of PCRW (60 ${\mu}$g/mL), the secretory responses of CA evoked by Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}$M), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}$M) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}$M) were also markedly blocked, respectively. Interestingly, in the simultaneous presence of PCRW (60 ${\mu}$g/mL) and L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}$M), the inhibitory responses of PCRW on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid were recovered to considerable level of the corresponding control release compared with those effects of PCRW-treatment alone. Practically, the amount of NO released from adrenal medulla after loading of PCRW (180 ${\mu}$g/mL) was significantly increased in comparison to the corresponding basal released level. Collectively, these results obtained here demonstrate that PCRW inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal gland of the normotensive rats. It seems that this inhibitory effect of PCRW is mediated by blocking the influx of both ions through $Na^+$ and $Ca^+{2$} channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are due at least partly to the increased NO production through the activation of nitric oxide synthase. Based on these data, it is also thought that PCRW may be beneficial to prevent or alleviate the cardiovascular diseases, such as hypertension and angina pectoris.

Resveratrol Inhibits Nicotinic Stimulation-Evoked Catecholamine Release from the Adrenal Medulla

  • Woo, Seong-Chang;Na, Gwang-Moon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.155-164
    • /
    • 2008
  • Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10${\sim}100{\mu}$M) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_n$ receptor agonist, 100${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100${\mu}$M) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30${\mu}$M), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent$Na^+$ channels, 100${\mu}$M), Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10${\mu}$M), and cyc1opiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10${\mu}$M) were significantly reduced. In the simultaneous presence of resveratrol (30${\mu}$M) and L-NAME (an inhibitor of NO synthase, 30${\mu}$M), the CA secretory evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyc1opiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through $Na^+$ and $Ca^{2+}$ channels into the adrenomedullary cells as well as by blocking the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.

Control of $Ca^{2+}$- Influx by $Ca^{2+}$/Calmodulin Dependent Protein Kinase II in the Activation of Mouse Eggs

  • Yoon, Sook-Young;Kang, Da-Won;Bae, In-Ha
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Change in intracellular $Ca^{2+}$-concentration ($[Ca^{2+}]_i$) is an essential event for egg activation and further development. $Ca^{2+}$ ion is originated from intracellular $Ca^{2+}$-store via inositol 1,4,5-triphosphate receptor and/or $Ca^{2+}$ influx via $Ca^{2+}$ channel. This study was performed to investigate whether changes in $Ca^{2+}$/calmodulin dependent protein kinase II (CaM KII) activity affect $Ca^{2+}$ influx during artificial egg activation with ethanol using $Ca^{2+}$ monitoring system and whole-cell patch clamp technique. Under $Ca^{2+}$ ion-omitted condition, $Ca^{2+}$-oscillation was stopped within 30 min post microinjection of porcine sperm factor, and ethanol-induced $Ca^{2+}$ increase was reduced. To investigate the role of CaM KII known as an integrator of $Ca^{2+}$- oscillation during mammalian egg fertilization, CaM KII activity was tested with a specific inhibitor KN-93. In the eggs treated with KN-93, ethanol failed to induce egg activation. In addition, KN-93 inhibited inward $Ca^{2+}$ current ($I_{Ca}$) in a time-dependent manner in whole-cell configuration. Immunostaining data showed that the voltage-dependent $Ca^{2+}$ channels were distributed along the plasma membrane of mouse egg and 2-cell embryo. From these results, we suggest that $Ca^{2+}$ influx during fertilization might be controlled by CaM KII activity.

Regulation of Atrial $Ca^{2+}$ Signaling by Inositol 1,4,5-Trisphosphate Receptor and Mitochondria (이노시톨 삼인산 수용체와 미토콘드리아에 의한 심방 근세포 $Ca^{2+}$ 신호전달의 조절)

  • Lee , Hyang-Jin;Cleemann , Lars;Morad , Martin;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.352-357
    • /
    • 2004
  • Atrial myocytes have two functionally separate groups of ryanodine receptors (RyRs): those at the periphery colocalized with L-type $Ca^{2+}$channels (DHPRS) and those a t the cell interior not associated with DHPRs. $Ca^{2+}$ current ($I_{ca}$) directly gates peripheral RyRs on action potential and the subsequent peripheral $Ca^{2+}$ release propagates into the center of atrial myocytes. The mechanisms that regulate the $Ca^{2+}$+ propagation wave remain Poorly understood. Using 2-D confocal$Ca^{2+}$ imaging, we examined the role of inositol 1,4,5-trisphosphate receptor (IP $_3R$) and mitochondria on ($I_{ca}$)- gated local $Ca^{2+}$ signaling in rat atrial myocytes. Blockade of IP $_3R$ by xestospongin C (XeC) partially suppressed the magnitudes of I ca-gated central and peripheral $Ca^{2+}$ releases with no effect on $I_{ca}$. Mitochondrial staining revealed that mitochondria were aligned with ${\thickapprox}2-{\mu}m$ separations in the entire cytoplasm of ventricular and atrial myocytes. Membrane depolarization induced rapid mitochondrial $Ca^{2+}$ rise and decay in the cell periphery with slower rise in the center, suggesting that mitochondria may immediately uptake cytosolic $Ca^{2+}$, released from the peripheral SR on depolarization, and re-release the $Ca^{2+}$ into the cytosol to activate neighboring central RyRs. Our data suggest that the activation of IP $_3R$ and mitochondrial $Ca^{2+}$ handing on action potential may serve as a cofactor for the $Ca^{2+}$ propagation from the DHPR-coupled RyRs to the DHPR-uncoupled RyRs with large gaps between them.