• Title/Summary/Keyword: $K_{Ca}$ channels

Search Result 360, Processing Time 0.019 seconds

[${\alpha}-Adrenergic$ and Cholinergic Receptor Agonists Modulate Voltage-Gated $Ca^{2+}$ Channels

  • Nah, Seung-Yeol;Kim, Jae-Ha;Kim, Cheon-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.485-493
    • /
    • 1997
  • We investigated the effect of ${\alpha}-adrenergic$ and cholinergic receptor agonists on $Ca^{2+}$ current in adult rat trigeminal ganglion neurons using whole-cell patch clamp methods. The application of acetylcholine, carbachol, and oxotremorine ($50\;{\mu}M\;each$) produced a rapid and reversible reduction of the $Ca^{2+}$ current by $17{\pm}6%,\;19{\pm}3%,\;and\;18{\pm}4%$, respectively. Atropine, a muscarinic antagonist, blocked carbachol- induced $Ca^{2+}$ current inhibition to $3{\pm}1%$. Norepinephrine ($50\;{\mu}M$) reduced $Ca^{2+}$ current by $18{\pm}2%$, while clonidine ($50\;{\mu}M$), an ${\alpha}2-adrenergic$ receptor agonist, inhibited $Ca^{2+}$ current by only $4{\pm}1%$. Yohimbine, an ${\alpha}2-adrenergic$ receptor antagonist, did not block the inhibitory effect of norepinephrine on $Ca^{2+}$ current, whereas prazosin, an ${\alpha}1-adrenergic$ receptor antagonist, attenuated the inhibitory effect of norepinephrine on $Ca^{2+}$ current to $6{\pm}1%$. This pharmacology contrasts with ${\alpha}2-adrenergic$ receptor modulation of $Ca^{2+}$ channels in rat sympathetic neurons, which is sensitive to clonidine and blocked by yohimbine. Our data suggest that the modulation of voltage dependent $Ca^{2+}$ channel by norepinephrine is mediated via an α1-adrenergic receptor. Pretreatment with pertussis toxin (250 ng/ml) for 16 h greatly reduced norepinephrine- and carbachol-induced $Ca^{2+}$ current inhibition from $17{\pm}3%\;and\;18{\pm}3%\;to\;2{\pm}1%\;and\;2{\pm}1%$, respectively. These results demonstrate that norepinephrine, through an ${\alpha}1-adrenergic$ receptor, and carbachol, through a muscarinic receptor, inhibit $Ca^{2+}$ currents in adult rat trigeminal ganglion neurons via pertussis toxin sensitive GTP-binding proteins.

  • PDF

Properties of Spontaneous Activity in Gastric Smooth Muscle

  • Suzuki, H.;Yamamoto, Y.;Hirst, G.D.S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 1999
  • Mammalian gastric smooth muscles generate spontaneous rhythmic contractions which are associated with slow oscillatory potentials (slow waves) and spike potentials. Spike potentials are blocked by organic $Ca^{2+}-antagonists,$ indicating that these result from the activation of L-type $Ca^{2+}-channel.$ However, the cellular mechanisms underlying the generation of slow wave remain unclear. Slow waves are insensitive to $Ca^{2+}-antagonists$ but are blocked by metabolic inhibitors or low temperature. Recently it has been suggested that Interstitial Cells of Cajal (ICC) serve as pacemaker cells and a slow wave reflects the coordinated behavior of both ICC and smooth muscle cells. Small segments of circular smooth muscle isolated from antrum of the guinea-pig stomach generated two types of electrical events; irregular small amplitude (1 to 7 mV) of transient depolarization and larger amplitude (20 to 30 mV) of slow depolarization (regenerative potential). Transient depolarization occurred irregularly and membrane depolarization increased their frequency. Regenerative potentials were generated rhythmically and appeared to result from summed transient depolarizations. Spike potentials, sensitive to nifedipine, were generated on the peaks of regenerative potentials. Depolarization of the membrane evoked regenerative potentials with long latencies (1 to 2 s). These potentials had long partial refractory periods (15 to 20 s). They were inhibited by low concentrations of caffeine, perhaps reflecting either depletion of $Ca^{2+}$ from SR or inhibition of InsP3 receptors, by buffering $Ca^{2+}$ to low levels with BAPTA or by depleting $Ca^{2+}$ from SR with CPA. They persisted in the presence of $Ca^{2+}-sensitive$ $Cl^--channel$ blockers, niflumic acid and DIDS or $Co^{2+},$ a non selective $Ca^{2+}-channel$ blocker. These results suggest that spontaneous activity of gastric smooth muscle results from $Ca^{2+}$ release from SR, followed by activation of $Ca^{2+}-dependent$ ion channels other than $Cl^-$ channels, with the release of $Ca^{2+}$ from SR being triggered by membrane depolarization.

  • PDF

N-Type Calcium Channels

  • Elmslie, Keith S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.427-437
    • /
    • 2000
  • The early studies of cardiac and smooth muscle cells provided evidence for two different calcium channels, the L-type (also called high-voltage activated [HVA]) and T-type (low-voltage activated [LVA]). These calcium channels provided calcium for muscle contractions and pace-making activities. As might be expected, the number of different calcium channels increased when researchers studied neurons and the identification of the neuronal calcium channels has proven to be much more difficult than with the muscle calcium channels. There are two reasons for this difficulty; (1) a larger number of different calcium channels in neurons and (2) many of the different calcium channels have similar kinetic properties. This review uses the N-type calcium channel to illustrate the difficulties in identifying and characterizing calcium channels in neurons. It shows that the discovery of toxins that can specifically block single calcium channel types has made it possible to easily and rapidly discern the physiological roles of the different calcium channels in the neuron, Without these toxins it is unlikely that progress would have been as rapid.

  • PDF

Calcium Signaling in Salivary Secretion

  • Kim, Jin Man;Lee, Sang-Woo;Park, Kyungpyo
    • Journal of Korean Dental Science
    • /
    • v.10 no.2
    • /
    • pp.45-52
    • /
    • 2017
  • Calcium has versatile roles in diverse physiological functions. Among these functions, intracellular $Ca^{2+}$ plays a key role during the secretion of salivary glands. In this review, we introduce the diverse cellular components involved in the saliva secretion and related dynamic intracellular $Ca^{2+}$ signals. Calcium acts as a critical second messenger for channel activation, protein translocation, and volume regulation, which are essential events for achieving the salivary secretion. In the secretory process, $Ca^{2+}$ activates $K^+$ and $Cl^-$ channels to transport water and electrolyte constituting whole saliva. We also focus on the $Ca^{2+}$ signals from intracellular stores with discussion about detailed molecular mechanism underlying the generation of characteristic $Ca^{2+}$ patterns. In particular, inositol triphosphate signal is a main trigger for inducing $Ca^{2+}$ signals required for the salivary gland functions. The biphasic response of inositol triphosphate receptor and $Ca^{2+}$ pumps generate a self-limiting pattern of $Ca^{2+}$ efflux, resulting in $Ca^{2+}$ oscillations. The regenerative $Ca^{2+}$ oscillations have been detected in salivary gland cells, but the exact mechanism and function of the signals need to be elucidated. In future, we expect that further investigations will be performed toward better understanding of the spatiotemporal role of $Ca^{2+}$ signals in regulating salivary secretion.

Vasorelaxing Effect by Protopanaxatriol and Protopanaxadiol of Panax ginseng in the Pig Coronary Artery (돼지 관상동맥에서 고려인삼의 Protopanaxatriol과 Protopanaxadiol의 혈관이완 효과)

  • Chang, Seok-Jong;Suh, Jang-Soo;Jeon, Byeong-Hwa;Nam, Ki-Yeul;Park, Hae-Kun
    • Journal of Ginseng Research
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 1994
  • Saponin of Panax ginseng (C.A. Meyer) is composed of Protopanaxatriol (PT) and Protopanaxa- diol (PD). We investigated the effects of PT and PD on the contractility and $^{45}Ca$ uptake in the pig coronary artery. Isometric tension in the helical strips and $^{45}Ca$ uptake in the ring strips were measured in the presence or absence of PT and PD. PT and PD did not affect the high K+ (40 mM)-induced contraction but relaxed the ACh-induced contraction in a dose4ependent manner (1~10 mg/dl). The vasorelaxing effect of PT on the ACh-induced contraction was more potent than that of PD. Those relaxations were partially suppressed by the rubbing of endothelium removal. ACh-induced contraction in the $Ca^{2+}$-free Tyrode's solution was suppressed by the pretreatment of PT or PD. Following the depletion of ACh-sensitive intracellular $Ca^{2+}$ pool, ACh-induced contraction was suppressed by the pratreatment of PT or PD. With the pretreatment of PT or PD, $^{45}Ca$ uptake by high K+ (43 mM) was not changed but that by ACh was suppressed in the pig coronary artery. From the above results, we suggested that the vasorelaxing effect of PT and PD of Panax ginseng was due to inhibition of intracellular $Ca^{2+}$ release, inhibition of $Ca^{2+}$ uptake via receptor-operated $Ca^{2+}$ channels and in part a release of vasorelaxing factor from endothelium in pig coronary artery.

  • PDF

Influence of $\omega$-Conotoxin GVIA, Nifedipine and Cilnidipine on Catecholamine Release in the Rat Adrenal Medulla

  • Yu, Byung-Sik;Kim, Byeong-Cheol;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • The present study was designed to establish comparatively the inhibitory effects of cilnidipine(CNP), nifedipine(NIF), and $\omega$-conotoxin GVIA(CTX) on the release of CA evoked by cholinergic stimulation and membrane depolarization from the isolated perfused model of the rat adrenal medulla. CNP(3 ${\mu}M$), NIF(3 ${\mu}M$), and CTX(3 ${\mu}M$) perfused into an adrenal vein for 60 min produced greatly inhibition in CA secretory responses evoked by ACh($5.32{\times}10^{-3}M$), DMPP($10^{-4}M$ for 2 min), McN-A-343($10^{-4}M$ for 2 min), high $K^+(5.6{\times}10^{-2}M)$, Bay-K-8644($10^{-5}M$), and cyclopiazonic acid($10^{-5}M$), respectively. For the CA release evoked by ACh and Bay-K-8644, the following rank order of potency was obtained: CNP>NIF>CTX. The rank order for the CA release evoked by McN-A-343 and cyclopiazonic acid was CNP>NIF>CTX. Also, the rank orders for high $K^+$ and for DMPP were NIF>CTX>CNP and NIF>CNP>CTX, respectively. Taken together, these results demonstrate that all voltage-dependent $Ca^{2+}$ channels(VDCCs) blockers of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA inhibit greatly the CA release evoked by stimulation of cholinergic(both nicotinic and muscarinic) receptors and the membrane depolarization without affecting the basal release from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effects of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA are mediated by the blockade of both L- and N-type, L-type only, and N-type only VDCCs located on the rat adrenomedullary chromaffin cells, respectively, which are relevant to $Ca^{2+}$ mobilization. It is also suggested that N-type VDCCs play an important role in the rat adrenomedullary CA secretion, in addition to L-type VDCCs.

Removing Chromatic Aberration in Color Image by Gradient Difference Minimization (기울기 차이 최소화를 통한 컬러 영상의 색수차 제거)

  • Kwon, Ji Yong;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.85-91
    • /
    • 2017
  • Lenses have different refractive indices for different wavelengths of light. This is why different wavelengths of rays are focused at different positions in the focal plane. Images are blurred and noticeable colored edges appear around the objects, which is known as chromatic aberration (CA). In this paper, an algorithm for removing CA artifacts in color images is proposed. Based on the fact that the gradients of color channels are highly correlated, the differences of the gradients of the channels in edges are minimized. The cost function is designed by using the gradients of the channels. Experimental results show the good performance of the proposed algorithm in removing the CA artifacts.

Wide Spectrum of Inhibitory Effects of Sertraline on Cardiac Ion Channels

  • Lee, Hyang-Ae;Kim, Ki-Suk;Hyun, Sung-Ae;Park, Sung-Gurl;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.327-332
    • /
    • 2012
  • Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In these experiments, we have used the whole cell patch clamp technique to examine the effects of sertraline on the major cardiac ion channels expressed in HEK293 cells and the native voltage-gated $Ca^{2+}$ channels in rat ventricular myocytes. According to the results, sertraline is a potent blocker of cardiac $K^+$ channels, such as hERG, $I_{Ks}$ and $I_{K1}$. The rank order of inhibitory potency was hERG > $I_{K1}$ > $I_{Ks}$ with $IC_{50}$ values of 0.7, 10.5, and 15.2 ${\mu}M$, respectively. In addition to $K^+$ channels, sertraline also inhibited $I_{Na}$ and $I_{Ca}$, and the $IC_{50}$ values are 6.1 and 2.6 ${\mu}M$, respectively. Modification of these ion channels by sertraline could induce changes of the cardiac action potential duration and QT interval, and might result in cardiac arrhythmia.

Effect of $Ca^{2+}-channel$ Blockers on Norepinephrine Release in the Rat Hippocampal Slice and Synaptosome

  • Kim, Suk-Won;Jung, Kyu-Yong;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.87-91
    • /
    • 2002
  • The aim of this study was to investigate the role of $Ca^{2+}-channel$ blockers in norepinephrine (NE) release from rat hippocampus. Slices and synaptosomes were incubated with $[^3H]-NE$ and the releases of the labelled products were evoked by 25 mM KCl stimulation. Nifedipine, diltiazem, nicardipine, flunarizine and pimozide did not affect the evoked and basal release of NE in the slice. But, diltiazem, nicardipine and flunarizine decreased the evoked NE release with a dose-related manner without any change of the basal release from synaptosomes. Also, a large dose of pimozide produced modest decrement of NE release. ${\omega}-conotoxin$ (CTx) GVIA decreased the evoked NE release in a dose-dependent manner without changing the basal release. And ${\omega}-CTxMVIIC$ decreased the evoked NE release in the synaoptosomes without any effect in the slice, but the effect of decrement was far less than that of ${\omega}-CTxGVIA.$ In interaction experiments with ${\omega}-CTxGVIA,\;{\omega}-CTxMVIIC$ slightly potentiated the effect of ${\omega}-CTxGVIA$ on NE release in the slice and synaptosomal preparations. These results suggest that the NE release in the rat hippocampus is mediated mainly by N-type $Ca^{2+}-channels,$ and that other types such as L-, T- and/or P/Q-type $Ca^{2+}-channels$ could also be participate in this process.

Influence of Fimasartan (a Novel $AT_1$ Receptor Blocker) on Catecholamine Release in the Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Hyo-Jeong;Lee, Seog-Ki;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.99-109
    • /
    • 2013
  • The aim of this study was to determine whether fimasartan, a newly developed $AT_1$ receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 ${\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), and veratridine (100 ${\mu}M$, an activator of $Na^+$ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 ${\mu}M$) and L-NAME (30 ${\mu}M$, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high $K^+$, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 ${\mu}M$) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 ${\mu}M$). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is relevant to $AT_1$ receptor blockade without NO release.