• Title/Summary/Keyword: $K_{2p}$ channels

Search Result 262, Processing Time 0.027 seconds

Role of Diacyl Glycerol (DAG) in Caprine Sperm Acrosomal Exocytosis Induced by Progesterone

  • Somanath, P.R.;Gandhi, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1091-1097
    • /
    • 2002
  • Capacitated goat spermatozoa generated diacyl glycerol (DAG) when suspended in Krebs-Ringer bicarbonate medium and induced by progesterone or $Ca^{2+}$ ionophore A23187. We have added Sn-1-oleoyl-2-acetyl glycerol externally, to study the effect of DAG in goat sperm acrosomal exocytosis. Addition of neomycin abolished the DAG generating capacity of progesterone in a dose dependent manner, suggesting the involvement of a phosphoinositidase C activated phospholipase C system in the process. The level of increase in phosphatidic acid was considerably low and was produced well after the DAG generation thereby suggesting the involvement of a DAG kinase which phosphorylates DAG to produce PA. The inhibition of progesterone mediated effect by inhibitors of $GABA_A/Cl^{-}$ channel and $Ca^{2+}$ channels further supports the evidence that the events of binding of agonist to the receptor(s), opening of $Ca^{2+}$ channels and the activation of phospholipase C are reconciled to perform the function of acrosome reaction in capacitated goat spermatozoa.

Low Complexity Lattice Reduction for MIMO Detection using Time Correlation of the Fading Channels (페이딩 채널의 시간 상관성을 이용한 Lattice Reduction 기반 MIMO 수신기 계산량 감소 기법)

  • Kim, Han-Nah;Choi, Kwon-Hue;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.523-529
    • /
    • 2010
  • We propose a very low complexity lattice reduction (LR) algorithm for MIMO detection in time varying channels. The proposed scheme reduces the complexity by performing LR in a block-wise manner. The proposed scheme takes advantage of the temporal correlation of the channel matrices in a block and its impact on the unimodular matrices during LR process. From this, the proposed scheme can skip a number of redundant LR processes for consecutive channel matrices and performs a single LR in a block. The simulation results investigated in this letter reveal that the proposed detection scheme requires only 43.4% multiplications and 17.3% divisions of LLL-LR and only 50.2% multiplications and 68.2% divisions of the conventional adaptive LR with almost no performance degradation.

DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

  • Cho, Pyung Sun;Lee, Han Kyu;Lee, Sang Hoon;Im, Jay Zoon;Jung, Sung Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.525-531
    • /
    • 2016
  • The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying $K^+$ current. In this study, we examined whether a ${\mu}$-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain $K^+$ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the $K^+$ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying $K^+$ channel) related acid-sensitive $K^+$ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced $K^+$ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain $K^+$ channel (TASK1 and 3) in addition to inwardly rectifying $K^+$ channel.

Shared Channel Scheme and Routing Algorithms of Every - Other- Row - Connecting Bilayered ShuffleNet for WDM Optical Networks (격행 연결 이중층 셔플넷을 이용한 광 WDM 네트워크 채널공유방식과 라우팅 알고리즘)

  • Ji, Yun-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.804-809
    • /
    • 2001
  • In this paper, a shared channel scheme and routing algorithms are proposed to reduce the number of wavelength channels for the optical WDM multihop networks using the every-other-row-connecting bilayered ShuffleNet scheme. In the shared channel scheme proposed, 2P nodes share the common wavelength channel reducing the number of required channels compare to other ones. By assigning an effective address each node, packets can be routed to the destination nodes through the intermediate nodes.

  • PDF

Nitric Oxide-cGMP-Protein Kinase G Pathway Contributes to Cardioprotective Effects of ATP-Sensitive $K^+$ Channels in Rat Hearts

  • Cuong, Cang Van;Kim, Na-Ri;Cho, Hee-Cheol;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.95-100
    • /
    • 2004
  • Ischemic preconditioning (IPC) has been accepted as a heart protection phenomenon against ischemia and reperfusion (I/R) injury. The activation of ATP-sensitive potassium $(K_{ATP})$ channels and the release of myocardial nitric oxide (NO) induced by IPC were demonstrated as the triggers or mediators of IPC. A common action mechanism of NO is a direct or indirect increase in tissue cGMP content. Furthermore, cGMP has also been shown to contribute cardiac protective effect to reduce heart I/R-induced infarction. The present investigation tested the hypothesis that $K_{ATP}$ channels attenuate DNA strand breaks and oxidative damage in an in vitro model of I/R utilizing rat ventricular myocytes. We estimated DNA strand breaks and oxidative damage by mean of single cell gel electrophoresis with endonuclease III cutting sites (comet assay). In the I/R model, the level of DNA damage increased massively. Preconditioning with a single 5-min anoxia, diazoxide $(100\;{\mu}M)$, SNAP $(300\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP) $(100\;{\mu}M)$ followed by 15 min reoxygenation reduced DNA damage level against subsequent 30 min anoxia and 60 min reoxygenation. These protective effects were blocked by the concomitant presence of glibenclamide $(50\;{\mu}M)$, 5-hydroxydecanoate (5-HD) $(100\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate, Rp-isomer (Rp-8-pCPT-cGMP) $(100\;{\mu}M)$. These results suggest that NO-cGMP-protein kinase G (PKG) pathway contributes to cardioprotective effect of $K_{ATP}$ channels in rat ventricular myocytes.

Functional Characteristics of TRPC4 Channels Expressed in HEK 293 Cells

  • Sung, Tae Sik;Kim, Min Ji;Hong, Soojin;Jeon, Jae-Pyo;Kim, Byung Joo;Jeon, Ju-Hong;Kim, Seon Jeong;So, Insuk
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.167-173
    • /
    • 2009
  • The classical type of transient receptor potential (TRPC) channel is a molecular candidate for $Ca^{2+}$-permeable cation channels in mammalian cells. Because TRPC4 and TRPC5 belong to the same subfamily of TRPC, they have been assumed to have the same physiological properties. However, we found that TRPC4 had its own functional characteristics different from those of TRPC5. TRPC4 channels had no constitutive activity and were activated by muscarinic stimulation only when a muscarinic receptor was co-expressed with TRPC4 in human embryonic kidney (HEK) cells. Endogenous muscarinic receptor appeared not to interact with TRPC4. TPRC4 activation by $GTP{\gamma}S$ was not desensitized. TPRC4 activation by $GTP{\gamma}S$ was not inhibited by either Rho kinase inhibitor or MLCK inhibitor. TRPC4 was sensitive to external pH with $pK_a$ of 7.3. Finally, TPRC4 activation by $GTP{\gamma}S$ was inhibited by the calmodulin inhibitor W-7. We conclude that TRPC4 and TRPC5 have different properties and their own physiological roles.

Extracellular ATP Stimulates $Na^+\;and\;Cl^-$ Transport through the Activation of Multiple Purinergic Receptors on the Apical and Basolateral Membranes in M-1 Mouse Cortical Collecting Duct Cells

  • Jung, Jin-Sup;Hwang, Sook-Mi;Lee, Ryang-Hwa;Kang, Soo-Kyung;Woo, Jae-Suk;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.231-241
    • /
    • 2001
  • The mammalian cortical collecting duct (CCD) plays a major role in regulating renal NaCl reabsorption, which is important in $Na^+$ and $Cl^-$ homeostasis. The M-1 cell line, derived from the mouse cortical collecting duct, has been used as a mammalian model of the study on the electrolytes transport in CCD. M-1 cells were grown on collagen-coated permeable support and short circuit current $(I_{sc})$ was measured. M-1 cells developed amiloride-sensitive current $5{\sim}7$ days after seeding. Apical and basolateral addition of ATP induced increase in $I_{sc}$ in M-1 cells, which was partly retained in $Na^+-free$ or $Cl^--free$ solution, indicating that ATP increased $Na^+$ absorption and $Cl^-$ secretion in M-1 cells. $Cl^-$ secretion was mediated by the activation of apical cystic fibrosis transmembrane regulator (CFTR) chloride channels and $Ca^{2+}-activated$ chloride channels, but $Na^+$ absorption was not mediated by activation of epithelal sodium channel (ENaC). ATP increased cAMP content in M-1 cells. The RT-PCR analysis demonstrated that M-1 cells express $P2Y_2,\;P2X_3\;and\;P2Y_4$ receptors. These results showed that ATP regulates $Na^+$ and $Cl^-$ transports via multiple P2 purinoceptors on the apical and basolateral membranes in M-1 cells.

  • PDF

Regulation of $Ba^{2+}$-Induced Contraction of Murine Ureteral Smooth Muscle

  • Kim, Young-Chul;Lee, Moo-Yeol;Kim, Wun-Jae;Myung, Soon-Chul;Choi, Woong;Kim, Chan-Hyung;Xu, Wen-Xie;Kim, Seung-Ryul;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.207-213
    • /
    • 2007
  • This study was designed to characterize ureteral smooth muscle motility and also to study the effect of forskolin(FSK) and isoproterenol(ISO) on smooth muscle contractility in murine ureter. High $K^+$(50 mM) produced tonic contraction by $0.17{\pm}0.06mN$(n=19). Neuropeptide and neurotransmitters such as serotonin($5{\mu}M$), histamine($20{\mu}M$), and carbarchol(CCh, $10{\sim}50{\mu}M$) did not produce significant contraction. However, CCh($50{\mu}M$) produced slow phasic contraction in the presence of 25 mM $K^+$. Cyclopiazonic acid(CPA, $10{\mu}M$), SR $Ca^{2+}$-ATPase blocker, produced tonic contraction(0.07 mN). Meanwhile, inhibition of mitochondria by protonophore carbnylcyanide m-chlorophenylhydrazone(CCCP) also produced weak tonic contraction(0.01 mN). The possible involvement of $K^+$ channels was also pursued. Tetraethyl ammonium chloride(TEA, 10 mM), glibenclamide($10{\mu}M$) and quinidine($20{\mu}M$) which are known to block $Ca^{2+}$-activated $K^+$ channels($K_{Ca}$ channel), ATP-sensitive $K^+$ channels($K_{ATP}$) and nonselective $K^+$ channel, respectively, did not elicit any significant effect. However, $Ba^{2+}$($1{\sim}2mM$), blocker of inward rectifier $K^+$ channels($K_{IR}$ channel), produced phasic contraction in a reversible manner, which was blocked by $1{\mu}M$ nicardipine, a blocker of dehydropyridine-sensitive voltage-dependent L-type $Ca^{2+}$ channels($VDCC_L$) in smooth muscle membrane. This $Ba^{2+}$-induced phasic contraction was significantly enhanced by $10{\mu}M$ cyclopiazonic acid(CPA) in the frequency and amplitude. Finally, regulation of $Ba^{2+}$-induced contraction was studied by FSK and ISO which are known as adenylyl cyclase activator and $\beta$-adrenergic receptor agonist, respectively. These drugs significantly suppressed the frequency and amplitude of $Ba^{2+}$-induced contraction(p<0.05). These results suggest that $Ba^{2+}$ produces phasic contraction in murine ureteral smooth muscle which can be regulated by FSK and $\beta$-adrenergic stimulation.

A Comparative Study on Interference-Limited Two-Way Transmission Protocols

  • Xia, Xiaochen;Zhang, Dongmei;Xu, Kui;Xu, Youyun
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.351-363
    • /
    • 2016
  • This paper investigates the performance of interference-limited two-way transmission protocols in the Rayleigh fading channels. New lower bound of outage probability and approximate expression of bit error rate (BER) for three-phase two-way relaying (3P-TWR) protocol are derived in closed-form. These expressions are valid for arbitrary signal-to-noise ratio values, numbers of co-channel interferers and amajority of modulation formats employed in the practical system. Then a comparative study is developed for the performance of three two-way transmission protocols, i.e., direct transmission (DT) protocol, two-phase two-way relaying (2P-TWR) protocol and 3P-TWR protocol based on the asymptotic expressions of outage probability and BER. On the basis of the theoretical results, the thresholds on the strength (variance) of direct channel and target rate for the relative performance of different protocols are obtained and the effect of interferences at the terminal and relay on the relative performance is analyzed. The results present key insights on how to choose proper two-way transmission protocol with the knowledge of fading channels, required date rate and modulation format to optimize the system performance in the practical interference-limited scenarios. Simulation results are presented to validate the theoretical analysis.

Multichannel Quantum Defect Study of the Perturber's Effect on the Overlapping Resonances in Rydberg Series for the Systems Involving 2 Closed and Many Open Channels

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1669-1680
    • /
    • 2010
  • The phase-shifted version of the multichannel quantum-defect theory (MQDT) was reformulated by disentangling the interloper spectrum from the perturbed dense Rydberg series for a systems involving 2 closed and more than 1 open channel. The theory was applied successfully to Martins and Zimmermann's photoionization spectra of the Rydberg series Cu I $3d^9\;4s(^1D_2)\;nd^2G_{9/2}$ perturbed by the interloper, $3d^9\;4p^2\;^4F_{9/2}$, for which Cohen's 4 channel QDT had failed. The zero surface graphic of the perturbed Fano's asymmetry parameter q of the autoionization spectrum of dense Rydberg series by the interloper was determined by only two parameters for this system. It was used as a map to trace the transformation route of the 3 channel autoionization spectra to the 4 channel spectra when the channel coupling of the closed channels with a newly added open channel was turned on progressively.