• Title/Summary/Keyword: $K^+-ion$ Selective PVC Electrode

Search Result 61, Processing Time 0.033 seconds

A New PVC-Membrane Electrode Based on a Thia-Substituted Macrocyclic Diamide for Selective Potentiometric Determination of Silver Ion

  • Shamsipur, Mojtaba;Kazemi, Sayed Yahya;Niknam, Khodabaksh;Sharghi, Hashem
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • A new PVC-membrane electrode for $Ag^+$ ion based on a thia-substituted macrocyclic diamide has been prepared. The electrode exhibited a Nernstian response for $Ag^+$ over a wide concentration range $(1.7{\times}10^{-6}-1.0{\times}10^{-1}M)$. It has a response time <15 s and can be used for at least 3 months without divergence. The proposed membrane sensor revealed good selectivities for $Ag^+$ over a variety of metal ions and can be used in a pH range 3.0-7.5. It has been used successfully for direct determination of $Ag^+$ in different real samples and, as an indicator electrode, in the titration of silver ion.

Development of a New Copper(II) Ion-selective Poly(vinyl chloride) Membrane Electrode Based on 2-Mercaptobenzoxazole

  • Akhond, Morteza;Ghaedi, Mehrorang;Tashkhourian, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.882-886
    • /
    • 2005
  • Copper(II) ion-selective PVC membrane electrode based on 2-mercaptobenzoxazole as a new ionophore and o-nitrophenyl octyl ether (o-NPOE) as plasticizer is proposed. This electrode revealed good selectivity for $Cu^{2+}$ over a wide variety of other metal ions. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, and concentration of internal solution on the potential response of $Cu^{2+}$ sensor were investigated. The electrode exhibits good response for $Cu^{2+}$ in a wide linear range of 5.0 ${\times}$ 10−.6-1.6 ${\times}$ $10^{-2}$ mol/L with a slope of 29.2 ${\pm}$ 2.0 mV/decade. The response time of the sensor is less than 10 s, and the detection limit is 2.0 ${\times}$ $10^{-6}$ mol/L. The electrode response was stable in pH range of 4-6. The lifetime of the electrode was about 2 months. The electrode revealed comparatively good selectivities with respect to many alkali, alkaline earth, and transition metal ions.

UO22+ Ion-Selective Membrane Electrode Based on a Naphthol-Derivative Schiff's Base 2,2'-[1,2-Ethandiyl bis(nitriloethylidene)]bis(1-naphthalene)

  • Shamsipur, Mojtaba;Saeidi, Mahboubeh;Yari, Abdullah;Yaganeh-Faal, Ali;Mashhadizadeh, Mohammad Hossein;Azimi, Gholamhasan;Naeimi, Hossein;Sharghi, Hashem
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.629-633
    • /
    • 2004
  • A new PVC membrane electrode for $UO_2^{2+}$ ion based on 2,2'-[1,2-ethanediyl bis (nitriloethylidene)]bis(1-naphthalene) as a suitable ionophore was prepared. The electrode exhibites a Nernstian response for $UO_2^{2+}$ ion over a wide concentration range ($1.0{\times}10^{-1}-1.0{\times}10^{-7}$M) with a slope of 28.5 ${\pm}$ 0.8 mV/decade. The limit of detection is $7.0{\times}10^{-8}$M. The electrode has a response time of < 20 s and a useful working pH range of 3-4. The proposed membrane sensor shows good discriminating abilities towards $UO_2^{2+}$ ion with regard to several alkali, alkaline earth transition and heavy metal ions. It was successfully used to the recovery of uranyl ion from, tap water and, as an indicator electrode, in potentiometric titration of $UO_2^{2+}$ ion with Piroxycam.

A Highly Selective Mercury(II) Ion-Selective Membrane Sensor (고 선택성 수은(II) 이온 막 센서)

  • Ensafi, Ali A.;Meghdadi, S.;Allafchian, Ali R.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.324-330
    • /
    • 2007
  • A new ion selective PVC membrane electrode is developed as a sensor for mercury(II) ions based on bis(benzoylacetone) propylenediimine (H2(BA)2PD) as an ionophore. The electrode shows good response characteristics and displays, a linear Emf vs. log[Hg2+] response over the concentration range of 1.0×10-6 to 1.0×10-1 M Hg(II) with a Nernstian slope of 29.8±0.75 mV per decade and with a detection limit of 2.2×10-7 M Hg(II) over the pH range of 2.5-11.5. Selectivity concentrations for Hg(II) relative to a number of potential interfering ions were also investigated. The sensor is highly selective for Hg(II) ions over a large number of cations with different charge. The sensor has been found to be chemically inert showing a fast response time of 60 s and was used over a period of 3 months with a good reproducibility (S = 0.27 mV). The electrode was successfully applied to determine mercury(II) in real samples with satisfactory results.

K+ Ion-Selective PVC Membrane Electrodes with Neutral Carriers (중성운반체를 이용한 K+ 이온선택성 PVC막 전극)

  • Kim, Yong-Ryul;Cho, Kyoung-Sub;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.734-741
    • /
    • 1998
  • Electrode characteristics were studied in the interface between sample solutions and $K^+$ ion selective PVC membrane electrodes containing neutral carriers, dibenzo-18-crown-6(D18Cr6) and valinomycin(Val). The effect of doping of base electrolytes, the chemical structure and the content of carrier, variation of plasticizer, membrane thickness, and concentration variation of sample solution on the response characteristics of electrode such as the measured Nernstian slope, the detection limit, the linear response range, and potentiometric selectivity coefficients, were studied. In order to synthesize the membrane D18Cr6 and Val as neutral carriers were used, and complex between the carrier and $K^+$ ions were used as active materials. PVC membrane electrodes were made of plasticizers (DBP, DOS, and DBS), the base electrolyte[potassium tetraphenylborate(KTPB)], and solvent(THF). The chemical structure of carrier D18Cr6 was best for electrode and ideal electrode characteristics were appeared especially in case of doping of TPB. The optimum carrier content was about 3.23 wt % in case of D18Cr6 and Val. DBP was best as a plasticizer. As membrane thickness decreased the electrode characteristics was improved. But its characteristics were lowered below the optimum membrane thickness because of the elution of carrier, deterioration of membrane strength, etc. In the case of D18Cr6, the selectivity coefficients by the mixed solution method for the $K^+$ ion were in the order of $NH_4{^+}>Ca^{2+}>Mg^{2+}>Na^+$.

  • PDF

Manganese(II) Ion-Selective Membrane Electrode Based on N-(2-picolinamido ethyl)-Picolinamide as Neutral Carrier

  • Aghaie, M.;Giahi, M.;Zawari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2980-2984
    • /
    • 2010
  • A new poly (vinyl chloride) (PVC) membrane electrode that is highly selective to $Mn^{+2}$ ions was prepared using N,N'-bis(2'-pyridinecarboxamide)-1,2-ethane ($bpenH_2$) as a suitable neutral carrier. This concentration range ($1.0{\times}10^{-5}$ to $1.0{\times}10^{-1}\;M$) with Nernstian slope of $29.3{\pm}0.5\;mV$ per decade. The detection limit and the response time of electrode were $8.0{\times}10^{-6}\;M$ and (${\leq}15\;s$) respectively. The membrane can be used for more than two months without observing any divergence. The electrodes exhibited excellent selectivity for $Mn^{+2}$ ion over other mono-, di- and trivalent cations. Selectivity coefficients were determined by the matched potential method (MPM). The electrode can be used in the pH range from 4.0 - 9.0. The isothermal coefficient of this electrode amounted to 0.00023 V/$^{\circ}C$. The stability constant (log $K_s$) of the $Mn^{+2}$ - $bpenH_2$ complex was determined at $25^{\circ}C$ by potentiometric titration in mixed aqueous solution. The proposed electrode was applied to the determination of $Mn^{+2}$ ions in real samples.

Lead-Selective Poly(vinyl chloride) Membrane Electrode Based on 1-Phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone

  • Zare, Hamid Reza;Ardakani, Mahammad Mazloum;Nasirizadeh, Navid;Safari, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • A PVC membrane electrode for lead ion based on 1-phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone (PQDBP) as ionophore was demonstrated. The optimum composition of the membrane was 30 wt% poly(vinyl chloride), 60 wt% dibutyl phthalate as a plasticizer, 4 wt% ionophore and 6 wt% sodium tetraphenylborate as additive. The electrode exhibits a Nernstian response (28.7 mV decade$^{-1}$) for Pb$^{2+}$ over a wide concentration range (1.0 ${\times}$ 10$^{-1}$ to 1 ${\times}$ 10$^{-6}$ M) with a detection limit of 6.0 ${\times}$ 10$^{-7}$ M. This sensor has a short response time and can be used for at least 2 months without any divergence in potentials. The proposed electrode could be used in a pH range of 3.0-6.0 and revealed good selectivities for Pb$^{+2}$ over a wide variety of other metal ions. It was successfully applied as an indicator electrode for the potentiometric titration of lead ion with potassium chromate and for the direct determination of lead in mine.

Electrochemical Sensor for the Selective Determination of Prindopril Based on Phosphotungestic Acid Plastic Membrane

  • Zareh, Mohsen M.;Wasel, Anower M.;Alkreem, Yasser M. Abd
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3088-3092
    • /
    • 2013
  • A novel PVC membrane sensor for perindopril based on perindopril-phosphotungstate ion pair complex was prepared. The influence of membrane composition (i.e. percent of PVC, plasticizer, ion-pair complex, and kind of plasticizer), inner solution, pH of test solution and foreign cations on the electrode performance was investigated. The optimized membrane demonstrates Nernstian response ($30.9{\pm}1.0$ mV per decade) for perindopril cations over a wide linear range from $9.0{\times}10^{-7}$ to $1{\times}10^{-2}$ M at $25^{\circ}C$. The potentiometric response is independent of the pH in the range of 4.0-9.5. The proposed sensor has the advantages of easy preparation, fast response time. The selectivity coefficients indicate excellent selectivity for perindopril over many common cations (e.g., $Na^+$, $K^+$, $Mg^{2+}$, $Cu^{2+}$, $Ni^{2+}$, rhamnose, maltose, glycine and benzamide. The practical applications of this electrode was demonstrated by measuring the concentrations of perindopril in pure solutions and pharmaceutical preparations with satisfactory results.

Novel Triiodide PVC-Based Membrane Sensor Based on a Charge Transfer Complex of Iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Shirvani Arani, Simindokht;Salavati Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1738-1742
    • /
    • 2005
  • In this study a novel triiodide ion-selective electrode based on a charge transfer complex of iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone (ICT), as a membrane carrier was prepared. The electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-2}$ and 5.0 ${\times}$ $10^{-7}$ M, with a Nernstian slope of 58. 99 ${\pm}$ 0.3 mV $decade^{-1}$ and detection limit of 3.0 ${\times}$ $10 ^{-7}$ M. The potentiometric response of the proposed sensor is independent of the pH of the solution in the pH range of 3.0-10.0. The electrode possesses the advantages of short conditioning time, fast response time, and especially, very good selectivity over a large number of common organic and inorganic anions. The electrode can be used for at least 6 months without any considerable divergences in the potentials. It was used as an indicator electrode in potentiometric titration of triiodide ion with thiosulfate.