• 제목/요약/키워드: $K^+$ ion source

검색결과 633건 처리시간 0.091초

Simulation Study to Improve Ion Transmission Efficiency in Mass Spectrometry with a Dual Ion Funnel Ion Source

  • Baek, Sun Jong;Kim, Seung Yong;Kim, Taeman;Kim, Hyun Sik
    • Mass Spectrometry Letters
    • /
    • 제4권4호
    • /
    • pp.91-94
    • /
    • 2013
  • We performed computer simulations to improve transmission efficiencies of a dual ion funnel system implemented on an FT-ICR MS. We found that the low m/z range from 50 to 150 could be significantly improved by operating the two ion funnels at different RF amplitudes. These new operational conditions could be applied to analyze metabolome samples, which require high sensitivity in the m/z range from 50 to 1,000.

Plasma source ion implantations for shallow $p^+$/n junction

  • Jeonghee Cho;Seuunghee Han;Lee, Yeonhee;Kim, Lk-Kyung;Kim, Gon-Ho;Kim, Young-Woo;Hyuneui Lim;Moojin Suh
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.180-180
    • /
    • 2000
  • Plasma source ion implantation is a new doping technique for the formation of shallow junction with the merits of high dose rate, low-cost and minimal wafer charging damage. In plasma source ion implantation process, the wafer is placed directly in the plasma of the appropriate dopant ions. Negative pulse bias is applied to the wafer, causing the dopant ions to be accelerated toward the wafer and implanted below the surface. In this work, inductively couples plasma was generated by anodized Al antenna that was located inside the vacuum chamber. The outside wall of Al chamber was surrounded by Nd-Fe-B permanent magnets to confine the plasma and to enhance the uniformity. Before implantation, the wafer was pre-sputtered using DC bias of 300B in Ar plasma in order to eliminate the native oxide. After cleaning, B2H6 (5%)/H2 plasma and negative pulse bias of -1kV to 5 kV were used to form shallow p+/n junction at the boron dose of 1$\times$1015 to 5$\times$1016 #/cm2. The as-implanted samples were annealed at 90$0^{\circ}C$, 95$0^{\circ}C$ and 100$0^{\circ}C$during various annealing time with rapid thermal process. After annealing, the sheet resistance and the junction depth were measured with four point probe and secondary ion mass spectroscopy, respectively. The doping uniformity was also investigated. In addition, the electrical characteristics were measured for Schottky diode with a current-voltage meter.

  • PDF

비정질 Se-Ge 박막으로의 LMIS $Ga^+$ 이온 침투현상 (The penetration phenomena of LMIS Ga ion into amorphous Se-Ge thin film)

  • 이현용;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1262-1264
    • /
    • 1993
  • An amorphous $Se_{75}Ge_{25}$ thin film as inorganic resist for the focused ion beam lithography(FIBL) is investigated. This film offers an attractive potential alternative to polymer resists because of a number of advantages, such as the possibility of preparing physically uniform films of thickness as small as 200A and obtaining both positive and negative resist action in the same material, compatibility with dry processing, the sensitivity on optical, e-beam and ion beam exposure, the high-temperature stability, etc. In previous paper, the defocused ion beam-induced characteristics in a-$Se_{75}Ge_{25}$ film has been propose. Practically it is neccesary to know the relation with resist and source ions. For the purpose, the ion stopping power, the ion projected range and ion transmission coefficiency are studied. In this paper, the theoretically calculated values of parameters are presented and compared with theory.

  • PDF

Tilt Angle Generation in NLC on Homeotropic Polymer Surface with Ion Beam Irradiation as a Function of Incident Angle

  • Lee, Sang-Keuk;Seo, Dae-Shik;Choi, Dai-Seub
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권3호
    • /
    • pp.120-122
    • /
    • 2008
  • We have studied the tilt angle generation on the homeotropic polyimide (PI) surface using a low intensity ion beam source as a function of incident angle. An excellent LC alignment of nematic liquid crystal (NLC) on the PI surface with ion beam exposure for all incident angles was observed. The tilt angle of NLC on the homeotropic PI surface for all incident angles was from 90 to 88 degree was observed. Also the tilt angle of NLC on the homeotropic PI surface with ion beam exposure of 400 eV had a tendency to increase as ion beam energy incident angle become more instance from 45 degree. Finally, a good LC alignment thermal stability on the homeotropic PI surface with ion beam exposure can be achieved.

The Prospect and Future of Li-ion Battery

  • Lee, Sung-Joon;Jeong, Seung-Hwan;You, Chung-Yeol;Soh, Dea-Wha;Hong, Sang-Jeen
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.627-628
    • /
    • 2005
  • In recent years, the rapid growth of portable electronic device market requires higher density characteristics of batteries. The speed at which portability and mobility is advancing hinges much on the battery. What is important is this energy source that engineers design handled devices around the battery, rather than the other way around. Much improvement has been made in reducing the power consumption of portable devices. Currently, the most popular secondary battery is Li-ion battery. Li-ion has won the limelight and become the most prominent battery. This paper reviews the prospect and future of the Li-ion battery.

  • PDF

신경망을 이용한 SiN 박막 표면거칠기에의 이온에너지 영향 모델링 (Neural Network Modeling of Ion Energy Impact on Surface Roughness of SiN Thin Films)

  • 김병환;이주공
    • 한국표면공학회지
    • /
    • 제43권3호
    • /
    • pp.159-164
    • /
    • 2010
  • Surface roughness of deposited or etched film strongly depends on ion bombardment. Relationships between ion bombardment variables and surface roughness are too complicated to model analytically. To overcome this, an empirical neural network model was constructed and applied to a deposition process of silicon nitride (SiN) films. The films were deposited by using a pulsed plasma enhanced chemical vapor deposition system in $SiH_4$-$NH_4$ plasma. Radio frequency source power and duty ratio were varied in the range of 200-800 W and 40-100%. A total of 20 experiments were conducted. A non-invasive ion energy analyzer was used to collect ion energy distribution. The diagnostic variables examined include high (or) low ion energy and high (or low) ion energy flux. Mean surface roughness was measured by using atomic force microscopy. A neural network model relating the diagnostic variables to the surface roughness was constructed and its prediction performance was optimized by using a genetic algorithm. The optimized model yielded an improved performance of about 58% over statistical regression model. The model revealed very interesting features useful for optimization of surface roughness. This includes a reduction in surface roughness either by an increase in ion energy flux at lower ion energy or by an increase in higher ion energy at lower ion energy flux.

대기압 플라즈마를 이용한 결정질 태양전지 표면 식각 공정 (Dry Etching Using Atmospheric Plasma for Crystalline Silicon Solar Cells)

  • 황상혁;권희태;김우재;최진우;신기원;양창실;권기청
    • 한국재료학회지
    • /
    • 제27권4호
    • /
    • pp.211-215
    • /
    • 2017
  • Reactive Ion Etching (RIE) and wet etching are employed in existing texturing processes to fabricate solar cells. Laser etching is used for particular purposes such as selective etching for grooves. However, such processes require a higher level of cost and longer processing time and those factors affect the unit cost of each process of fabricating solar cells. As a way to reduce the unit cost of this process of making solar cells, an atmospheric plasma source will be employed in this study for the texturing of crystalline silicon wafers. In this study, we produced the atmospheric plasma source and examined its basic properties. Then, using the prepared atmospheric plasma source, we performed the texturing process of crystalline silicon wafers. The results obtained from texturing processes employing the atmospheric plasma source and employing RIE were examined and compared with each other. The average reflectance of the specimens obtained from the atmospheric plasma texturing process was 7.88 %, while that of specimens obtained from the texturing process employing RIE was 8.04 %. Surface morphologies of textured wafers were examined and measured through Scanning Electron Microscopy (SEM) and similar shapes of reactive ion etched wafers were found. The Power Conversion Efficiencies (PCE) of the solar cells manufactured through each process were 16.97 % (atmospheric plasma texturing) and 16.29 % (RIE texturing).

POLYMER SURFACE MODIFICATION WITH PLASMA SOURCE ION IMPLANTATION TECHNIQUE

  • Han, Seung-Hee;Lee, Yeon-Hee;Lee, Jung-Hye;Yoon, Jung-Hyeon;Kim, Hai-Dong;Kim, Gon-ho;Kim, GunWoo
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.345-349
    • /
    • 1996
  • The wetting property of polymer surfaces is very important for practical applications. Plasma source ion implantation technique was used to improve the wetting properties of polymer surfaces. Poly(ethylene terephtalate) and other polymer sheets were mounted on the target stage and an RF plasma was generated by means of an antenna located inside the vacuum chamber. High voltage pulses of up to -10kV, 10 $\mu$sec, and up to 1 kHz were applied to the stage. The samples were implanted for 5 minutes with using Ar, $N_2,O_2,CH_4,CF_4$ and their mixture as source gases. A contact angle meter was used to measure the water contact angles of the implanted samples and of the samples stored in ambient conditions after implantation. The modified surfaces were analysed with Time-Of-Flight Mass Spectrometer (TOF-SIMS) and Auger Electron Spectroscopy (AES). The oxygen-implanted samples showed extremely low water contact angles of $3^{\circ}C$ compared to $79^{\circ}C$ of unimplanted ones. Furthermore, the modified surfaces were relatively stable with respect to aging in ambient conditions, which is one of the major concerns of the other surface treatment techniques. From TOF-SIMS analysis it was found that oxygen-containing functional groups had been formed on the implanted surfaces. On the other hand, the $CF_4$-implanted samples turned out to be more hydro-phobic than unimplanted ones, giving water contact angles exceeding $100^{\circ}C$ . The experiment showed that plasma source ion implantation is a very promising technique for polymer surface modification especially for large area treatment.

  • PDF

KSTAR 중성입자빔 수송라인 해석 (An Analysis on the KSTAR neutral beam injection line)

  • 임기학;김진춘;권경훈;조승연
    • 한국진공학회지
    • /
    • 제8권4B호
    • /
    • pp.556-564
    • /
    • 1999
  • The analysis on heat fluxed on and transmission efficiencies by the collimators of neutral beam injection lines in KSTAR tokamak device has been carried out. And a mathematical model describing non-Gaussian beam distribution profile has been established. A neutral beam injection device is composed of 3 separate ion sources and corresponding beam transport lines, which deal with 7.8 MW of beam power, respectively. The divergence angles of ion beam are $1.2^{\circ}$and $0.5^{\circ}$, in vertical and horizontal directions, respectively. The maximum normal heat load on source exit scraper is 9.1 kW/$\textrm{cm}^2$ and net beam transmission efficiency is ~28%. The effect of misalignment of ion source and scrapers on the scraper heat load and beam transmission also has been analyzed.

  • PDF

Urgency of LiFePO4 as cathode material for Li-ion batteries

  • Guo, Kelvii Wei
    • Advances in materials Research
    • /
    • 제4권2호
    • /
    • pp.63-76
    • /
    • 2015
  • The energy crisis involving depletion of fossil fuel resource is not the sole driving force for developing renewable energy technologies. Another driving force is the ever increasing concerns on the air quality of our planet, associated with the continuous and dramatic increase of the concentration of greenhouse gas (mainly carbon dioxide) emissions. The internal combustion engine is a major source of distributed $CO_2$ emissions caused by combustion of gasoline derived largely from fossil fuel. Another major source of $CO_2$ is the combustion of fossil fuels to produce electricity. New technologies for generating electricity from sources that do not emit $CO_2$, such as water, solar, wind, and nuclear, together with the advent of plug-in hybrid electric vehicles (PHEV) and even all-electric vehicles (EVs), offer the potential of alleviating our present problem. Therefore, the relevant technologies in $LiFePO_4$ as cathode material for Li-ion batteries suitable to the friendly environment are reviewed aim to provide the vital information about the growing field for energies to minimize the potential environmental risks.