• Title/Summary/Keyword: $K^+$ excretion

Search Result 1,259, Processing Time 0.025 seconds

Effect of Complete Fasting on Energy Metabolites and Serum Parathyroid Hormone and Mineral Excretion in Women (여성에서 절식이 에너지 대사산물 및 혈청 PTH 수준과 무기질 배설에 미치는 영향)

  • 박현서;이은옥
    • Journal of Nutrition and Health
    • /
    • v.34 no.5
    • /
    • pp.547-553
    • /
    • 2001
  • This study was designed to observe the change of body composition and nutrient metabolites and the excretion of minerals during complete fasting for 10 days in thirty women. Average loss of body weight was 7.98kg and body fat was gradually reduced after 9 days fasting, but the loss of lean body mass was reduced after 7 days fasting. Serum glucose level was sustained at constant level, but serum levels of blood urea nitrogen, free acid and $\beta$-hydroxybutyrate were significantly increased during fasting but decreased after re-feeding. Urinary excretions of 3-methylhistidine, total creatinine, and urea were high in the beginning of fasting but gradually decreased. Serum level of parathyroid hormone was significantly reduced by fasting but regained after re-feeding. Serum level of minerals was at the constant level throughout the experimental period. The urinary excretion of minerals(Ca, K, Mg, P) was significantly increased in the early stage of fasting and then reduced from 7 days, but the excretion of Zn was continuously increased until the late stage of fasting. These results showed that amino acid fatty acid released from the breakdown of muscle protein and body fat, respectively, were utilized for energy during fasting. Body weight and BMI were reduced because of the increased muscle protein breakdown and body water excretion during early stage of fasting, but the significant body fat loss was after 9 days fasting. Therefore, it could be suggested to fast for longer than 10 days if the reduction of body fat was planned by fasting, and recommed to exercise and ingest more vitamins and minerals to replace the excreted minerals during fasting. (Korean J Nutrition 34(5) : 547~553, 2001)

  • PDF

Effects of Soy Isoflavone Intake on Urinary and Fecal Isoflavone Excretion in Rats

  • Nam, Hae-Kyung;Kim, Sun-Hee
    • Nutritional Sciences
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • This study was undertaken to determine the bioavailability of isoflavones in weanling Sprague-Dawley rats by providing diets containing different levels of soy isoflavones for 6 weeks: 0.025% (low isoflavone intake; LI), 0.125% (medium isoflavone intake; MI), and 0.25% (high isoflavone intake; HI). The subsequent fecal and urinary excretion of daidzein and genistein was then measured. As the levels of dietary isoflavones increased, the amount of food intakes significantly decreased, and weight gain was slower in female rats. In male rats, there was no significant difference in weight gains related to dietary intakes. Urinary excretion of daidzein and genistein was significantly higher in the MI and HI groups in both male and female rats than the control and LI groups. The recovery % of daidzein and genistein in the urine was significantly lower in the MI and HI groups. Fecal daidzein increased as dietary isoflavone intakes increased in female rats; however, in male rats the increase was significant only in the HI group. The recovery % of daidzein and genistein in the feces of female rats was not significantly different among the four groups. When dietary isoflavones were increased from 0.025% to 0.25%, the amounts of daidzein and genistein excreted in the urine and feces increased; however, the low recovery rate of both daidzein and genistein in the urine implies an increased bioavailability of isoflavones. We also observed sex-related differences in the urinary and fecal recovery of isoflavone intakes.

Calcium Status and Bone Mineral Density by the Level of Sodium Intake in Young Women (성인 여성의 나트륨 섭취수준과 칼슘 영양상태 및 골밀도)

  • Yoon, Jin-Sook;Lee, Mi Jung
    • Korean Journal of Community Nutrition
    • /
    • v.18 no.2
    • /
    • pp.125-133
    • /
    • 2013
  • Previous studies have shown that sodium excretion is positively related to calcium excretion in the urine. As excessive sodium intake is a common nutritional problem in Korea, we intended to investigate associations among sodium intake levels and calcium status, evaluated by 24 hour recall method and urinary excretion, and bone status. We collected dietary information for non-consecutive three days from 139 young adult women 19~29 years. After classifying the subjects into 4 groups based on the dietary sodium levels by daily total sodium intake (mg) and sodium density (sodium intake per 1000 kcal energy intake), we compared the bone status, nutrient intakes, urinary calcium and sodium excretions. The results showed a positive association between total daily sodium intake and intake of other nutrients. However, no significant differences in nutrients intakes were observed among subject groups classified by sodium density levels. There were no significant differences of bone density among groups by total daily sodium intake as well as by sodium density. While total daily sodium intake showed significantly positive relationship with urinary sodium (p < 0.05) and calcium (p < 0.05), sodium density was not related to urinary excretion of calcium and sodium. Our results suggested that promoting balanced meals providing appropriate amounts of energy intake is the essential component of nutrition education for improving calcium status of young Korean women with excessive sodium intake.

Effect of Atrial Natriuretic Factor on the Renal Function and Renin Release in Unanesthetized Rabbit (무마취 가토 신장기능에 미치는 Atrial Natriuretic Factor의 영향)

  • Lee, June-K.;Cho, Kyung-W.
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.103-124
    • /
    • 1986
  • Since it has been suggested that atrial receptor may be involved in the mechanism of extracellular volume regulation, it was shown that the granularity of atrial cardiocytes can be changed by water and salt depletion, and that an extract of cardiac atrial tissue, when injected intravenously into anesthetized rats, was shown to cause a large and rapid increase in renal excretion of sodium. Various natriuretic peptides were isolated and synthetized, and the effects were investigated by many workers. Most studies, however, have been carried out under anesthesia and there have teen some controversies over direct effect of the factor on the renal function. Therefore, it was attempted in this study to access the effects of an atrial extract and a synthetic natriuretic factor in unanesthetized rabbits. Intrarenal arterial infusion of atrial extract caused a rapid increase of urinary volume and excretion of sodium. Glomerular filtration rate and renal plasma flow were both increased with no change in filtration fraction. The ventricular extract produced no change in urinary excretion of electrolytes, nor in renal hemodynamics. Intrarenal infusion of synthetic atrial natriuretic factor caused increases of renal excretory rate of sodium, chloride and potassium, and $FE_{Na}$. Glomerular filtration rate, renal plasma flow increased. And free water clearance also increased. Accentuated excretory function correlated well with increased glomerular filtration rate and renal plasma flow during infusion and for 10 minutes following the cessation of the infusion. Renin secretion rate decreased during constant infusion of atrial natriuretic factor. However, no correlation was found with the changes in glomerular filtration rate, renal plasma flow, or urinary excretion of sodium. These results suggest that atrial extract or atrial natriuretic factor induces changes in renal hemodynamics, as in excretion of electrolytes either indirectly through hemodynamic changes or directly by inhibiting tubular reabsorption. At the same time, renin secretory function is affected by the factor possibly through an unknown mechanism.

  • PDF

Effect of renal ischemia on renal function and excretion of lysine, alanine in the rabbit (신장 허혈이 토끼 신기능과 lysine 및 alanine 배설에 미치는 영향)

  • Nam, Yun-jeong;Kim, Yong-keun;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.4
    • /
    • pp.729-733
    • /
    • 1995
  • This study was carried out to determine the effect of renal ischemia on renal function and excretion of amino acid in rabbit. The animal models of renal ischemia induced experimentally by clamping the renal artery for different lengths of time. These results were summarized as follows: 1. Ischemia for 30 or 60 min produced a polyuria which is accompanied by an increase in $Na^+$ excretion. Glomerular filtration rate (GFR) and p-aminohippurate plasma($C_{PAH}$) were not altered by 30 min of ischemia, indicating that transient ischemia results in a marked tubular dysfuction before a reduction in GFR or renal blood flow. 2. Reabsorption of glucose and amino acids such as alanine and lysine was markedly reduced after 30 min of ischemia, and the effect was more pronounced after 60 min of ischemia.

  • PDF

Effect of Water Temperature on Ammonia Excretion of Juvenile Pacific Cod Gadus macrocephalus (대구 Gadus macrocephalus 치어의 암모니아 배설에 미치는 수온의 영향)

  • Oh, Sung-Yong;Park, Heung-Sik;Noh, Choong-Hwan
    • Korean Journal of Ichthyology
    • /
    • v.22 no.3
    • /
    • pp.147-153
    • /
    • 2010
  • A study was carried out to examine the effect of water temperature on daily pattern and rate of total ammonia nitrogen (TAN) excretion in juvenile Pacific cod Gadus macrocephalus (mean body weight: $36.5{\pm}0.8\;g$) under fasting and feeding conditions. Fish were acclimated over 10 days under three different water temperatures (9, 11 and $13^{\circ}C$), and transferred to TAN measuring system under each water-temperature condition. After 72 hours of starving, fasting TAN excretion was measured at each temperature. To investigate post-prandial TAN excretion, fish were hand-fed with a commercial diet containing 40.6% crude protein for 7 days, two times daily at 08:00 and 16:00 h. Water was sampled from both the inlet and outlet of the fish chamber every 2 h over a 24-h period. Both fasting and post-prandial TAN excretion increased with increased water temperatures (p<0.05). Mean fasting TAN excretion rates at 9, 11 and $13^{\circ}C$ were 9.3, 11.0 and $11.9\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. The value of $9^{\circ}C$ was lower than those of 11 and $13^{\circ}C$ (p<0.05), but there was no significant difference between $11^{\circ}C$ and $13^{\circ}C$. Mean post-prandial TAN excretion rates at 9, 11 and $13^{\circ}C$ were 23.0, 31.6 and $45.4\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. A peak value of post-prandial TAN excretion rate occurred after 2 h from each feeding, and the second value is always higher than the first value. Maximum post-prandial TAN excretion rate occurred after 10 h from the first feeding at $9^{\circ}C$ (mean $38.0\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), $11^{\circ}C$ ($52.9\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$) and $13^{\circ}C$ ($77.5\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), respectively. The TAN loss for ingested nitrogen at $9^{\circ}C$ (43.9%) was lower than those of $11^{\circ}C$ (46.4%) and $13^{\circ}C$ (48.4%). The overall results indicate that water temperature exhibits a significant effect on the nitrogen excretion of juvenile Pacific cod.

Management of Excretion of Phosphorus, Nitrogen and Pharmacological Level Minerals to Reduce Environmental Pollution from Animal Production - Review -

  • Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.384-394
    • /
    • 2001
  • In order to prevent pollution from animal waste, P, N and pharmacological level minerals should be properly managed. Microbial phytase has been used successfully to control P excretion. Activity of natural phytase in certain plant feedstuffs is high enough to be considered in feed formulation. Nitrogen control can be achieved through amino acid supplementation and protein restriction in the diet. Supplementation with carbohydrases reduces output of excreta as well as N. Ammonia release from the manure could be reduced by using a low crude protein diet along with the supplementation with probiotics products. Excretion of minerals used at pharmacological level can be reduced by using chelated forms. Cu and Zn in the form of methionine chelate have been successfully used in the broiler and pig diets.

Excretion, Tissue Distribution and Toxicities of Titanium Oxide Nanoparticles in Rats after Oral Administration over Five Consecutive Days (티타늄나노입자의 랫드 5일 반복 경구투여 후 배설, 조직분포 및 독성에 관한 평가연구)

  • Kim, Hyejin;Park, Kwangsik
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.294-303
    • /
    • 2014
  • Objectives: Excretion and tissue distribution of titanium oxide nanoparticles were evaluated in rats after oral administration. The relation between toxicity and systemic concentration of nanoparaticles was investigated. Methods: Rats were orally treated with titanium oxide nanoparticles (10, 100 mg/kg) for five consecutive days. General toxicity, blood chemistry, and serum biochemical analysis were analyzed. Titanium concentration in liver, kidney, lung, urine and feces were measured and histopathology was performed in these organs. Results: Induction of toxicological parameters was not observed and titanium nanoparticles were excreted via feces. Conclusion: Absorption of titanium oxide nanoparticles via the gastrointestinal tract after oral administration was very poor and systemic concentration of titanium oxide nanoparticles was not elevated. Titanium oxide nanoparticles did not cause toxicities in rats after oral administration.

Effect of Vasoactive Intestinal Peptide on Renal Function in Rats (Vasoactive Intestinal Peptide(VIP)의 백서신장기능(白鼠腎臟機能)에 미치는 영향(影響))

  • Kim, Suhn-Hui;Cho, Kyung-W
    • The Korean Journal of Physiology
    • /
    • v.16 no.2
    • /
    • pp.159-163
    • /
    • 1982
  • Vasoactive intestinal peptide (VIP) found in duodenal mucosa originally has been suggested as a neurotransmitter. Its localization, however, now known, is not limited to the gastrointestinal tract, but scattered at many different kinds of tissues, smooth muscles, endocrine gland and exocrine gland as well as central and peripheral neural tissues. To investigate the effect of VIP on renal function, an experiment has been done in anesthetized male rats. The results obtained were: 1) Urinary output and creatinine clearance decreased significantly during the period of infusion of VIP, 2.0ug/rat/7minutes. 2) Urinary excretion of sodium, potassium and chloride decreased but without significance by infusion of VIP. 3) Blood pressure, systolic and diastolic, decreased by VIP administered intravenously in the period of infusion. 4) Changes of urinary output, sodium and chloride excretion was correlated with changes of creatinine clearance. The above data suggest that VIP administered intravenously can suppress the renal hemodynamics indirectly, and also decrease electrolyte excretion through its renal hemodynamic change.

  • PDF