Effect of Water Temperature on Ammonia Excretion of Juvenile Pacific Cod Gadus macrocephalus

대구 Gadus macrocephalus 치어의 암모니아 배설에 미치는 수온의 영향

  • Oh, Sung-Yong (Marine Living Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Park, Heung-Sik (Center for International Cooperative Programs, Korea Ocean Research & Development Institute) ;
  • Noh, Choong-Hwan (East Sea Environment Research Department, Korea Ocean Research & Development Institute)
  • 오승용 (한국해양연구원 해양생물자원연구부) ;
  • 박흥식 (한국해양연구원 해양과학국제협력센터) ;
  • 노충환 (한국해양연구원 동해특성연구부)
  • Received : 2010.08.03
  • Accepted : 2010.09.13
  • Published : 2010.09.30

Abstract

A study was carried out to examine the effect of water temperature on daily pattern and rate of total ammonia nitrogen (TAN) excretion in juvenile Pacific cod Gadus macrocephalus (mean body weight: $36.5{\pm}0.8\;g$) under fasting and feeding conditions. Fish were acclimated over 10 days under three different water temperatures (9, 11 and $13^{\circ}C$), and transferred to TAN measuring system under each water-temperature condition. After 72 hours of starving, fasting TAN excretion was measured at each temperature. To investigate post-prandial TAN excretion, fish were hand-fed with a commercial diet containing 40.6% crude protein for 7 days, two times daily at 08:00 and 16:00 h. Water was sampled from both the inlet and outlet of the fish chamber every 2 h over a 24-h period. Both fasting and post-prandial TAN excretion increased with increased water temperatures (p<0.05). Mean fasting TAN excretion rates at 9, 11 and $13^{\circ}C$ were 9.3, 11.0 and $11.9\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. The value of $9^{\circ}C$ was lower than those of 11 and $13^{\circ}C$ (p<0.05), but there was no significant difference between $11^{\circ}C$ and $13^{\circ}C$. Mean post-prandial TAN excretion rates at 9, 11 and $13^{\circ}C$ were 23.0, 31.6 and $45.4\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$, respectively. A peak value of post-prandial TAN excretion rate occurred after 2 h from each feeding, and the second value is always higher than the first value. Maximum post-prandial TAN excretion rate occurred after 10 h from the first feeding at $9^{\circ}C$ (mean $38.0\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), $11^{\circ}C$ ($52.9\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$) and $13^{\circ}C$ ($77.5\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$), respectively. The TAN loss for ingested nitrogen at $9^{\circ}C$ (43.9%) was lower than those of $11^{\circ}C$ (46.4%) and $13^{\circ}C$ (48.4%). The overall results indicate that water temperature exhibits a significant effect on the nitrogen excretion of juvenile Pacific cod.

대구 치어(평균 36.5 g)의 수온 (9, 11 그리고 $13^{\circ}C$)에 따른 절식 (fasting)과 식후(post-prandial) 총암모니아성 질소 (total ammonia nitrogen, TAN) 배설의 일간 패턴과 배설률을 조사하였다. 실험어는 10일 이상 실험 수온에서 순치한 후 각 실험 수온 조건의 암모니아 배설 측정 시스템으로 옮겨 TAN 배설률을 측정하였다. 절식 TAN 배설은 72시간 절식 후 측정하였고, 식후 TAN 배설은 상품 사료(단백질 함량 40.6%)를 하루에 두 번(08:00, 16:00h), 7일간 공급한 뒤 측정하였다. 실험어 사육수조 유입수와 배출수를 2시간 간격으로 24시간 동안 채수하여 TAN을 분석하였으며, 모든 실험 조건은 3반복으로 실시하였다. 절식 및 식후 TAN 배설 모두 수온 상승에 따라 증가하였다 (p<0.05). 절식 시 시간당 평균 TAN 배설률은 수온 9, 11 그리고 $13^{\circ}C$에서 각각 9.3, 11.0 그리고 $11.9mg\;TAN\;kg\;fish^{-1}\;h^{-1}$이었고, $11^{\circ}C$$13^{\circ}C$$9^{\circ}C$에 비해 유의적으로 높았다 (p<0.05). 식후 시간당 평균 TAN 배설률의 경우 수온 9, 11 그리고 $13^{\circ}C$에서 각각 23.0, 31.6 그리고 $45.4\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$으로 나타났다. 최대 평균 TAN 배설률은 최초 사료 공급 10시간 후 나타났으며, 수온 9, 11 그리고 $13^{\circ}C$에서 각각 38.0, 52.9 그리고 $77.5\;mg\;TAN\;kg\;fish^{-1}\;h^{-1}$이였다. 수온 9, 11 그리고 $13^{\circ}C$에서 섭취한 질소에 대한 TAN 배설 비율은 각각 43.9, 46.4 그리고 48.4%로 나타나 $11^{\circ}C$$13^{\circ}C$$9^{\circ}C$에 비해 유의적으로 높았다(p<0.05). 이상의 결과에서 수온은 대구 치어의 질소 대사에 유의한 영향을 미치는 것으로 나타났다.

Keywords

References

  1. 오승용.노충환.홍경표.김종만. 2004. 한국산 선발계통, 일본산 양식계통 그리고 이들 두 계통간 잡종 계통 참돔 치어의 총 암모니아성 질소 배설률 및 분 배출률을 통한 사료 내 단백질 이용 효율 비교 Ocean and Polar Res., 26: 415-423. https://doi.org/10.4217/OPR.2004.26.3.415
  2. 오승용.장요순.노충환.최희정.명정구.김종관. 2009 . 강도다리 Platichthys stellatus 치어의 암모니아 배설에 미치는 수온의 영향. 한국어류학회지, 21 :1-6.
  3. 오승용.조재윤 2005. 나일틸라피아의 암모니아 배설에 미치는 어체중과 사료 내 단백질 함량의 영향. 한국양식학회지, 18: 122-129.
  4. 오승용.최상준. 2009 . 볼락 Sebastes inermis 치어의 암모니아 배설에 미치는 수온의 영향. Ocean and Polar Res., 31: 231-238. https://doi.org/10.4217/OPR.2009.31.3.231
  5. 한국해양연구원. 2003. 대구자원의 효율적 증강대책. 한국해양연구원, 82pp .
  6. Ballestrazzi, R, D. Lanari, E. D' Agaro and A. Mion. 1994. The effect of dietary protein level and source ongrowth, body composition' total ammonia and reactive phosphate excretion of growing sea bass (Dicentrarchus labrax). Aquaculture, 127:197-206. https://doi.org/10.1016/0044-8486(94)90426-X
  7. Beamish, F.W.H. and E. Thomas. 1984. Effects of dietary protein and lipid on nitrogen losses in rainbow trout, Salmo gairdneri. Aquaculture, 41: 359-371. https://doi.org/10.1016/0044-8486(84)90203-5
  8. Brett, J.R and C.A. Zala. 1975. Daily pattern of nitrogen excretion and oxygen consumption of sockeye salmon (Oncorhynchus nerka) under controlled conditions. J. Fish Res. Bd. Can.,32: 2479-2486. https://doi.org/10.1139/f75-285
  9. Brett, J.R. and T.D.D. Groves. 1979. Physiological energetics. In: Hoar, W.H., D.J. Randall and J.R. Brett(eds.), Bioenergetics and Growth. Fish Physiology. vol. 8. Academic Press, New York, pp. 279-352.
  10. Cai, Y. and R.C. Summerfelt. 1992. Effects of temperature and size on oxygen consumption and ammonia excretion by walleye. Aquaculture, 104: 127-138. https://doi.org/10.1016/0044-8486(92)90143-9
  11. Clarke, E.R, J.P. Harman and J.R. Forster. 1985. Production of metabolic and waste products by intensively farmed rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 27: 381-393. https://doi.org/10.1111/j.1095-8649.1985.tb03187.x
  12. Cripps, S.J. 1993. The application of suspended particle characterization techniques to aquaculture system. In: Wang, J. (ed.), Techniques for Modern Aquaculture. American Society of Agricultural Engineering, St. Joseph, MI, pp. 26-34.
  13. Cui, Y. and R.J. Wootton. 1988. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus: The effect of ration, temperature and body size on food consumption, faecal production and nitrogenous excretion. J. Fish BioI., 33: 431-443. https://doi.org/10.1111/j.1095-8649.1988.tb05484.x
  14. Delos Reyes, A.A. and T.B. Lawson. 1996. Combination of a bead filter and rotating biological contactor in a recirculating fish culture system. Aquacult. Eng., 15: 27-39. https://doi.org/10.1016/0144-8609(95)00005-Y
  15. Dosdat, A., F. Servais, R. Metailler, C. Huelvan and E. Desbruyeres. 1996. Comparison of nitrogen losses in five teleost fish species. Aquaculture, 141: 107-127. https://doi.org/10.1016/0044-8486(95)01209-5
  16. Engin, K. and C.G. Carter. 2001. Ammonia and urea excretion rates of juvenile Australian short-finned eel (Anguilla australis australis) as influenced by dietary protein level. Aquaculture,194: 123-136. https://doi.org/10.1016/S0044-8486(00)00506-8
  17. Forsberg, J.A. and R.C. Surnmerfelt. 1992. Effects of temperature on dial ammonia excretion of fingerling walleye. Aquaculture, 102: 115-126. https://doi.org/10.1016/0044-8486(92)90294-U
  18. Gelineau, A, F. Medale and T. Boujard. 1998. Effect of feeding time on postprandial nitrogen excretion and energy expenditure in rainbow trout. J. Fish Biol., 52: 655-664.
  19. Jobling, M. 1981. Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice Pleuronectes platessa L. J. Fish BioI., 18: 87-96. https://doi.org/10.1111/j.1095-8649.1981.tb03763.x
  20. Kaushik, S.J. 1980. Influence of nutritional status on the daily patterns of nitrogen excretion in the carp (Cyprinus carpio L.) and the rainbow trout(Salmo gairdneri R.). Reprod. Nutr. Dev.,20: 1751-1765. https://doi.org/10.1051/rnd:19801002
  21. Kaushik, S.J. and C.B. Cowey. 1991. Dietary factors affecting nitrogen excretion by fish. In: Cowey, C.B. and C.Y. Cho(eds.), Nutritional Strategies & quaculture Waste. University of Guelph, Canada, pp. 37-50.
  22. Leung, K.M.Y., J.C.W. Chu and R.S.S. Wu. 1999a. Effects of body weight, water temperature and ration size on ammonia excretion by the areolated grouper(Epinephelus areolatus) and mangrove snapper (Lutjanus argentimaculatus). Aquaculture, 170: 215-227. https://doi.org/10.1016/S0044-8486(98)00404-9
  23. Leung, K.M.Y., J.C.W. Chu and R.S.S. Wu. 1999b. Interacting effects of water temperature and dietary protein levels on post-prandial ammonia excretion by the areolated grouper Epinephelus areolatus (Forskal), Aquae. Res., 30: 793-798. https://doi.org/10.1046/j.1365-2109.1999.00391.x
  24. Lied, E. and B. Braatan. 1984. The effect of feeding and starving and different ratios of protein-energy to total-energy in the feed on the excretion of ammonia in the Atlantic cod (Gadus morhua). Comp. Biochem. Physiol., 78: 49-52. https://doi.org/10.1016/0300-9629(84)90090-2
  25. Lyytikainen, T. and M. Jobling. 1998. The effect of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Arctic charr. J. Fish Biol., 52: 1186-1198.
  26. Meade, J.W. 1985. Allowable ammonia for fish culture. Prog. Fish-Cult., 47: 135-145. https://doi.org/10.1577/1548-8640(1985)47<135:AAFFC>2.0.CO;2
  27. Perera, W.M.K., C.G. Carter and D.F. Houlihan. 1995. Feed consumption, growth and growth efficiency of rainbow trout, Oncorhynchus mykiss (Walbaum) fed on diets containing bacterial single cell protein. Br. J. Nutr., 73: 591-603. https://doi.org/10.1079/BJN19950061
  28. Porter, C.B., M.D. Krom, M.G. Robbins, L. Brickell and A. Davidson. 1987. Ammonia excretion and total N budget for gilthead seabream (Sparus aurata) and its effect on water quality conditions. Aquaculture, 66: 287-297. https://doi.org/10.1016/0044-8486(87)90114-1
  29. Rychly, J. and A.B. Marina. 1977. Ammonia excretion of trout during a 24-hour period. Aquaculture, 11: 173-178. https://doi.org/10.1016/0044-8486(77)90074-6
  30. Strickland, J.D. and T.R Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd edition. Bull. Fish. Res. Bd. Can., 167: 310.
  31. Tanaka, Y. and S. Kadowaki. 1995. Kinetics of nitrogen excretion by cultured flounder Paralichthys olivaceus. J. World Aquacult. Soc., 26: 188-193. https://doi.org/10.1111/j.1749-7345.1995.tb00243.x
  32. Thomas, S.L. and R.H. Piedrahita. 1998. Apparent ammonia-nitrogen production rates of white sturgeon (Acipenser transmontanus) in commercial aquaculture system. Aquacult. Eng., 17: 45-55. https://doi.org/10.1016/S0144-8609(97)01014-5
  33. Wu, R.S.S. 1995. The environmental impact of marine fish culture: towards a sustainable future. Mar. Poll. Bull., 31: 159-166. https://doi.org/10.1016/0025-326X(95)00100-2