• Title/Summary/Keyword: $IrO_2$

Search Result 1,568, Processing Time 0.03 seconds

Removing High Concentration Nitrogen by Electrolysis (전기분해에 의한 고농도 질소 제거의 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Choi, Hae-Kyoung;Kwon, Dong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.265-277
    • /
    • 2000
  • Laboratory experiments were conducted to investigate characteristics for removing ammonia-nitrogens by electrolysis methods. A stainless steel plate is used as the cathode and either $IrO_2{\backslash}Ti$ plate serves as the anode. Experiments were conducted to examine the effects of the operating conditions, such as the current density, retention time, electrode gap, $Cl^-/NH_4{^+}-N$ on the $NH_4{^+}-N$ removal efficiency. Possible optimum range for these operating variables are experimentally determined. The $NH_4{^+}-N$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/NH_4{^+}-N$ ratio was about $20.0kgCl^-/kgNH_4{^+}-N$ when $NH_4{^+}-N$ removal obtained 73 %, $Cl^-/NH_4{^+}-N$ ratio needs $27.6kgCl^-/kgNH_4{^+}-N$ so as to $NH_4{^+}-N$ completely remove. The removal efficiency of $NH_4{^+}-N$ increase with current density, retention time and $Cl^-/NH_4{^+}-N$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $NH_4{^+}-N$ removal efficiencies are $$NH_4{^+}-N_{re}(%)=14.5364(Current\;density)^{0.7093}{\times}(HRT)^{1.0060}{\times}(Gap)^{-0.9926}{\times}(Cl^-/NH_4{^+}-N)^{1.0024}$$ With adding COD or/and alkalinity, relationships are $$NH_4{^+}-N_{re}(%)=9.8408(Current\;density)^{0.6232}{\times}(HRT)^{1.0534}$$ There existed a competition between the removals for $NH_4{^+}-N$ and $COD_{Cr}$ during electrolysis, the removal of $NH_4{^+}-N$ was shown to be dominant. $NH_4{^+}-N$ removal was high as addition of glucose and alkalinity.

  • PDF

Effect of Coating with the Mixture of PEDOT:PEG and Sulfuric Acid to Enhance Conductivity of Bacterial Cellulose Platform Film (박테리아 셀룰로오스 기반 전도성 막의 전도도 향상을 위한 PEDOT:PEG와 황산혼합액 코팅의 영향)

  • Yim, Eun-Chae;Kim, Seong-Jun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.114-119
    • /
    • 2016
  • In this study, we tried to add the conductivity to natural polymer like bacterial cellulose (BC) coated with the conductive polymer PEDOT:PEG, graphene and silver nano-wire (AgNW). Sulfuric acid of 10 to 20% was previously mixed with PEDOT:PEG and then the solution was electron spin-coated on the BC membrane. And then, additive coating with graphene and AgNW were done to improve conductivity, which was examined by hall effect. As the result, we confirmed a considerable improvement of conductivity compared to BC-coated film without sulfuric acid treatment as $2.487{\times}10^{10}$ vs $8.093{\times}10^{15}$ ($1/cm^3$), showing higher electron density with $3.25{\times}10^5$ times. Also, we identified that changed particle type to the polymer type by sulfuric acid using SEM analysis. For FT-IR analysis, it was confirmed that S-O radical ($1200cm^{-1}$) increased in the sulfuric acid treatment than non-treated sulfuric acid. As the method used very small amount of PEDOT:PEG, its transparency could be kept, and pre-treatment process of sulfuric acid will be able to simplify the production process.

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.

Li-bearing Tosudite from the Sungsan Mine, Korea (해남 성산광산에서 산출되는 함리튬 토수다이트)

  • Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • Tosudite from the Sungsan mine, Korea is an alteration product of rhyolitic tuff in the cretaceous Hwangsan Formation. It is associated with illite, dickite, nacrite or quartz and also found in the cavities of black claystone. X-ray diffraction and chemical analyses show that the Sungsan tosudite is a lithium-bearing aluminous 1:1 regularly interstratified mineral of di, dioctahedral chlorite and smectite. Its structural formula is $(K_{0.73}Na_{0.02}Ca_{0.07})(Si1_{13.23}Al_{2.77})(Li_{0.52}Mg_{0.08}Mn_{0.01)Fe^{3+}_{0.07}Al_{12.33})O_{40}(OH)_{20}$ and it suggests that Sungsan tosudite consists of regularly interstratified Li-donbassite and beidellite. DTA and TG curves as well as IR absorption data also support such a result. Temperature of formation of tosudite is inferred to be between $110{\circ}$ and $270{\circ}C$.

  • PDF

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process (전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상)

  • Joongwon, Park;Rina, Kim;Hyunju, Lee;Min-seuk, Kim;Hiesang, Sohn
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.486-495
    • /
    • 2022
  • This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

Synthesis and Characterization of Ni(Ⅱ) Complexes with Aminophosphine, Ni(L)X$_2$ and [Ni(L)$_2$]Cl$_2$ (L = L$_1$, L$_2$ ; X = Cl$^-$, Br$^-$, I$^-$) (Aminophosphine류 리간드가 배위된 Ni(Ⅱ) 착물, Ni(L)X$_2$ 및 [Ni(L)$_2$]Cl$_2$ (L = L$_1$, L$_2$ ; X = Cl$^-$, Br$^-$, I$^-$)의 합성과 성질)

  • Jeong, Maeng Jun;Park, Sang Gyu;Jeong, Min Ho;Kim, Bong Gon;Do, Myeong Gi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.288-294
    • /
    • 1994
  • Several new nickel(II) complexes, [Ni(L)X$_2$ and [Ni(L)$_2$]Cl$_2$ (L = L$_1$, L$_2$ ; X = Cl$^-$, Br$^-$, I$^-$) have been synthesized by reacting NiX$_2$ or NiX$_2$, 6H$_2$O with aminophosphines(L) wherein L is 1,2-bis{(diphenylphosphino)amino}propane(L$_1$) or 1,2-bis{(diphenylphosphino)amino}ethane(L$_2$). These complexes are characterized by the optical spectroscopic methods (UV/Vis, CD, IR, $^1$H-NMR, and $^{31}$P-NMR) together with conductometer and elemental analysis. The complex with I$^-$ is tetrahedral, where the complexes with Cl$^-$ or Br$^-$ are square planar. The complexes, [Ni(L)X$_2$](X = Cl$^-$, Br$^-$) become tetrahedral, as they react with methyl iodide. The Ni(L)X$_2$ complexes underwent solvolysis with a various organic solvents such is EtOH, DMSO, THF and DMF.

  • PDF

Low-Temperature FTIR Spectroscopy of Bacteriorhodopsin and Phoborhodopsin

  • Kandori, Hideki;Furutani, Yuji;Shimono, Kazumi;Iwamoto, Masayuki;Sudo, Yuki;Shichida, Yoshinori;Kamo, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.106-109
    • /
    • 2002
  • Archaeal rhodopsins possess retinal molecule as their chromophores, and their light-energy and light-signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of protein then leads to functional processes, proton pump in bacteriorhodopsin (bR) and transducer activation in phoborhodopsin (pR). It is known that sensory rhodopsins can pump protons in the absence of their transducers. Thus, there should be common and specific features in their protein structural changes for function. In this paper, our r ecent studies on pR from Natronobacterium pharaonis (ppR) by means of low-temperature Fourier-transform infrared (FTIR) spectroscopy are compared with those of bR. In particular, protein structural changes upon retinal photoisomerization are studied. Comparative investigation of ppR and bR revealed the similar structures of the polyene chain of the chromophore and water-containing hydrogen-bonding network, whereas the structural changes upon photoisomerization were more extended in ppR than in bR. Extended protein structural changes were clearly shown by the assignment of the C=O stretch of Asnl05. FTIR studies of a ppR mutant with the same retinal binding site as in bR revealed that the Schiff base region is important to determine their colors.

  • PDF

Isolation and Characterization of an Acyclic Isoprenoid from Semecarpus anacardium Linn. and its Antibacterial Potential in vitro - Antimicrobial Activity of Semecarpus anacardium Linn. Seeds -

  • Purushothaman, Ayyakkannu;Meenatchi, Packirisamy;Saravanan, Nallappan;Karuppaiah, Muthu;Sundaram, Ramalingam
    • Journal of Pharmacopuncture
    • /
    • v.20 no.2
    • /
    • pp.119-126
    • /
    • 2017
  • Objectives: Semecarpus anacardium Linn. is a plant well-known for its antimicrobial, antidiabetic and anti-arthritic properties in the Ayurvedic and Siddha system of medicine. This has prompted the screening of this plant for antibacterial activity. The main aims of this study were to isolate compounds from the plant's seeds and to evaluate their antibacterial effects on clinical bacterial test strains. Methods: The n-butanolic concentrate of the seed extract was subjected to thin layer chromatography (TLC) and repeated silica gel column chromatography followed by elution with various solvents. The compound was identified based on observed spectral (IR, $^1H$ NMR, $^{13}C$ NMR and high-resolution mass spectrometry) data. The well diffusion method was employed to evaluate the antibacterial activities of the isolated acyclic isoprenoid compound (final concentration: $5-15{\mu}g/mL$) on four test bacterial strains, namely, Staphylococcus aureus (MTCC 96), Bacillus cereus (MTCC 430), Escherichia coli (MTCC 1689) and Acinetobacter baumannii (MTCC 9829). Results: Extensive spectroscopic studies showed the structure of the isolated compound to be an acyclic isoprenoid ($C_{21}H_{32}O$). Moreover, the isoprenoid showed a remarkable inhibition of bacterial growth at a concentration of $15{\mu}g/mL$ compared to the two other doses tested (5 and $10{\mu}g/mL$) and to tetracycline, a commercially available antibiotic that was used as a reference drug. Conclusion: The isolation of an antimicrobial compound from Semecarpus anacardium seeds validates the use of this plant in the treatment of infections. The isolated compound found to be active in this study could be useful for the development of new antimicrobial drugs.

전기화학공정을 이용한 질화규소방열기판 상 금속 전극 형성에 관한 연구

  • Sin, Seong-Cheol;Kim, Ji-Won;Gwon, Se-Hun;Im, Jae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.129.1-129.1
    • /
    • 2016
  • 반도체, 디스플레이, PC 등 전자기기의 경우 소자 내 발생된 열로 인해 기기의 성능 및 효율, 수명 등이 감소하기 때문에 이러한 내부 열을 외부로 방출시켜줄 필요가 있다. 일반적으로 heat pipe나 냉각 팬(fan) 등의 외부장치에 의해 강제적으로 냉각해주는 기술이 있지만 휴대용 디바이스와 같이 작은 전자기기의 경우 소자 자체적으로 열전도 특성이 뛰어난 기판을 사용하여 열전도에 의해 열이 소자 밖으로 방출될 수 있도록 방열 설계를 해주어야 한다. 따라서 소자 전체를 지지해주고 열전도에 의해 방열 기능을 해주는 방열기판에 대한 관심이 증가하고 있다. 현재 가장 많이 사용되어지는 세라믹 방열기판으로는 알루미나가 있지만 보다 소자의 집적화와 고성능화로 인하여 열전도도가 높은 질화규소 기판의 요구가 증대되고 있다. 하지만 이러한 질화규소기판에 금속전극을 형성하는 기술은 종래의 알루미나 기판에 이용한 DPC(Direct Plated Copper), DBC(Direct Bonded Copper)기술을 적용할 수 없다. 그래서 현재는 메탈블레이징을 이용하여 전극을 형성하지만 공정비용 및 대형기판에 형성이 어려운 단점이 있다. 따라서, 본 연구에서는 질화규소 방열기판에 전기화학공정을 통하여 밀착력이 우수한 금속 전극 회로층 형성에 대한 연구를 진행하였다. 질화규소 방열기판에 무전해 Ni 도금을 통하여 금속층을 형성하는데 이 때 세라믹 기판과 금속층 사이의 낮은 밀착력을 향상시키기 위해 습식공정을 통하여 표면처리를 진행하였다. 또한 촉매층을 $Pd-TiO_2$ 층을 이용하여 무전해 도금공정을 이용하여 Ni, 전극층을 형성하였다. 질화규소 표면에 OH기 형성을 확인하기 위해 FT-IR(Fourier-transform infrared spectroscopy)분석을 실시하였으며 OH 그룹 형성 및 silane의 화학적 결합으로 인해 금속 전극층의 밀착력이 향상된 것을 cross hatch test 및 scratch test를 통해 확인하였고 계면 및 표면형상 특성 등을 분석하기 위해 TEM(Transmission electron microscopy), SEM(Scanning electron microscopy), AFM(Atomic-force microscopy)등의 장비를 이용하였다.

  • PDF

Steroids from the Aerial Parts of Artemisia princeps Pampanini

  • Yoo, Jong-Su;Ahn, Eun-Mi;Bang, Myun-Ho;Song, Myoung-Chong;Yang, Hye-Joung;Kim, Dong-Hyun;Lee, Dae-Young;Chung, Hae-Gon;Jeong, Tae-Sook;Lee, Kyung-Tae;Choi, Myung-Sook;Baek, Nam-In
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.5
    • /
    • pp.273-277
    • /
    • 2006
  • Three stigmastane-type sterols and one ergostane-type sterol were isolated from the ethyl acetate soluble fraction of the aerial parts of Artemisia princeps Pampanini (Sajuarissuk). From the results of physico-chemical data including NMR, MS and IR, the chemical structures of the compounds were determined as $stigmasta-5,22-dien-3,{\beta}-ol (stigmasterol, 1),stigmast-5-en-3{\beta}-ol({\beta}-sitosterol,2), 5{\beta},8{\beta}-epidioxy-5{\beta},8{\beta}-ergosta-6,22-dien-3{\beta}-ol(ergosterol peroxide, 3),\;and\;{\beta}-sitosterol\;3-O-{\beta}D-glucopyranoside(daucosterol,4)$.