• Title/Summary/Keyword: $IC_{I}$

Search Result 738, Processing Time 0.028 seconds

The Antitumor Effects of Selenium Compound $Na_5SeV_5O_{18}{\cdot}3H_2O$ in K562 Cell

  • Yang, Jun-Ying;Wang, Zi-Ren
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.859-865
    • /
    • 2006
  • With an approach to study the anti-tumor effects and mechanism of selenium compound, we investigated the anti-tumor activity and mechanism of $Na_5SeV_5O_{18}{\cdot}3H_2O$ (NaSeVO) in K562 cells. The results showed that $0.625{\sim}20\;mg/L$ NaSeVO could significantly inhibit the proliferation of K562 cells in vitro in a time- and concentration-dependent manner as determined by microculture tetrazolium (MTT) assay, the IC50 values were 14.41 (4.45-46.60) and 3.45 (2.29-5.22) mg/L after 48 hand 72 h treatment with NaSeVO respectively. In vivo experiments demonstrated that i.p. administration of 5, 10 mg/kg NaSeVO exhibited an significant inhibitory effect on the growth of transplantation tumor sarcoma 180 (S180) and hepatoma 22 (H22) in mice, with inhibition rate 26.8% and 58.4% on S180 and 31.3% and 47.4% on H22, respectively. Cell cycle studies indicated that the proportion of G0/G1 phase was increased at 2.5 mg/L while decreased at 10 mg/L after treatment for 24, 48 h. Whereas S phase was decreased at 2.5-5 mg/L and markedly increased at 10 mg/L after treatment for 48 h. After treatment for 24 h, 10 mg/L NaSeVO also markedly increased S and G2/M phases. Take together, the result clearly showed that NaSeVO markedly increased S and G2/M phases at 10 mg/L. The study of immunocytochemistry showed that the expression bcl-2 is significantly inhibited by 10 mg/L NaSeVO, and bax increased. Morphology observation also revealed typical apoptotic features. NaSeVO also significantly caused the accumulation of $Ca^{2+}$ and $Mg^{2+}$, reactive oxygen species (ROS) and the reduction of pH value and mitochondrial membrane potential in K562 cells as compared with control by confocal laser scanning microscope. These results suggest that NaSeVO has anti-tumor effects and its mechanism is attributed partially to apoptosis induced by the elevation of intracellular $Ca^{2+}$, $Mg^{2+}$ and ROS concentration, and a reduction of pH value and mitochondria membrane potential (MMP).

Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry

  • Tang, Yan-Hui;Hu, Min;He, Xiao-Peng;Fahnbulleh, Sando;Li, Cui;Gao, Li-Xin;Sheng, Li;Tang, Yun;Li, Jia;Chen, Guo-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1000-1006
    • /
    • 2011
  • The discovery of carbohydrate-based bioactive compounds has recently received considerable interest in the drug development. This paper stresses on the application of 1-methoxy-O-glucoside as the central scaffold, whereas salicylic pharmacophores were introduced with diverse spatial orientations probing into the structural preference of an enzymatic target, i.e. protein tyrosine phosphatase 1B (PTP1B). By employing regioselective protection and deprotection strategy, 2,6-, 3,4-, 4,6- and 2,3-di-O-propynyl 1-methoxy-O-glucosides were previously synthesized and then coupled with azido salicylate via click chemistry in forming the desired bidentate salicylic glucosides with high yields. The inhibitory assay of the obtained triazolyl derivatives leads to the identification of the 2,3-disubstituted salicylic 1-methoxy-O-glucoside as the structurally privileged PTP1B inhibitor among this bidentate compound series with micromole-ranged $IC_{50}$ value and reasonable selectivity over other homologous PTPs tested. In addition, docking simulation was conducted to propose a plausible binding mode of this authorized inhibitor with PTP1B. This research might furnish new insight toward the construction of structurally different bioactive compounds based on the monosaccharide scaffold.

IL-1Ra Elaboration by Colchicine Stimulation in Normal Human Bronchial Epithelial Cells (정상 인체 기관지 상피세포에서 콜히친의 Interleukin-1 수용체 길항제 생성자극)

  • Lee, Jae Hyung;Kim, Sang Heon;Kim, Tae Hyung;Sohn, Jang Won;Yoon, Ho Joo;Shin, Dong Ho;Park, Sung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.145-153
    • /
    • 2007
  • Background: Asthma is a syndrome that is characterized by a variable degree of airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Colchicine is an inexpensive and safe medication with unique anti-inflammatory properties. IL-1Ra (Interleukin-1 receptor antagonist) mediates the anti-inflammatory effect in human inflammatory diseases, including asthma. This study examined whether IL-1Ra mediates the anti-inflammatory effect of colchicine in normal human bronchial epithelial cells (NHBE), RAW 264.7 cells (murine macrophage cell line), and a mouse lung. Methods: NHBE, RAW 264.7 cells and BALB/c mice were stimulated with colchicine, and the increase in the IL-1Ra level was estimated by ELISA, Western analysis and RT-PCR analysis. Results: Colchicine stimulated NHBE and RAW 264.7 cells to release IL-1Ra into the supernatant in a dose-and time-dependent manner. The major isoform of IL-1Ra in NHBE and RAW 264.7 cells is type I icIL-1Ra, and sIL-1Ra, respectively. IL-1Ra up-regulation was blocked by PD98059, a specific inhibitor in MAPK pathways. Colchicine also stimulated the secretion of IL-1Ra into the bronchoalveolar lavage (BAL) fluid of BALB/c mouse. Conclusion: Colchicine stimulates an increase in the IL-1Ra level both in vivo and in vitro, and might have an anti-inflammatory effect.

Inhibitory Action of YJA20379, a New Proton Pump Inhibitor on Helicobacter Pylori Growth and Urease

  • Woo, Tae-Wook;Chang, Man-Sik;Chung, Young-Kuk;Kim, Kyu-Bong;Sohn, Sang-Kwon;Kim, Sung-Gyu;Choi, Wahn-Soo
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 1998
  • The activities of two types of antiulcer agents against 9 strains of Helicobacter pylori (H. pylori) were determined by the agar dilution method. The antiulcer agents were YJA20379, a newly synthesized proton pump inhibitor developed by Yung-jin Pharmaceutical company, and omeprazole. Both compounds were found to have significant activities against this organism. The MIC values of YJA20379 and omeprazole were 11.7 and $31.25{\mu.g/ml}$ respectively. In addition, the inhibitory potency of both compounds was investigated on H. pylori urease which is believed to be an important colonization and virulence factor in the pathogenesis of gastritis and peptic ulcers. These compounds dose-dependently inhibited urease extracted with distilled water and their $IC_50$ values were $16.4{\times}10^{-5} M and 14.3{\times}10^{-5}M,$ respectively. In addition, a pH-dependent study to determine whether inhibitory potency would be activated by acid condition was performed. It was found that unlike omeprazole, YJA20379 was not affected by acid condition. To determine the inhibition pattern and optimal concentration of substrate, kinetics were evaluated at various pH levels (pH 5.0, 7.0, and 8.5). The data show that YJA20379 noncompetitively inhibited H. pylori urease and $K_M/K_i$values were 0.96 $mM/60{\mu}M (pH 5.0), 0.56 mM/141.5 {\mu}M (pH 7.0)$, and $1.94mM/34{\mu}M (pH 8.5)$, respectively. Based on data obtained, it is concluded that YJA20379 is a significant inhibitor of H. pylori growth and urease and therefore, taking these results into consideration, YJA20379 might be a beneficial therapy for gastritis and peptic ulcers induced by H. pylori.

  • PDF

Antiplatelet Activity of [5-(2-Methoxy-5-chlorophenyl)furan-2-ylcarbonyl]guanidine (KR-32570), a Novel Sodium/hydrogen Exchanger-1 and Its Mechanism of Action

  • Lee Kyung-Sup;Park Jung-Woo;Jin Yong-Ri;Jung In-Sang;Cho Mi-Ra;Yi Kyu-Yang;Yoo Sung-Eun;Chung Hun-Jong;Yun Yeo-Pyo;Park Tae-Kyu;Shin Hwa-Sup
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.375-383
    • /
    • 2006
  • The anti platelet effects of a novel guanidine derivative, KR-32570 ([5-(2-methoxy-5-chlorophenyl) furan-2-ylcarbonyl]guanidine), were investigated with an emphasis on the mechanisms underlying its inhibition of collagen-induced platelet aggregation. KR-32570 significantly inhibited the aggregation of washed rabbit platelets induced by collagen $(10{\mu}g/mL)$, thrombin (0.05 U/mL), arachidonic acid $(100{\mu}M)$, a thromboxane (TX) $A_2$ mimetic agent U46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin $F_2,\;1{\mu}M$) and a $Ca^{2+}$ ATPase inhibitor thapsigargin $(0.5{\mu}M)$ ($IC_{50}$ values: $13.8{\pm}1.8,\;26.3{\pm}1.2,\;8.5{\pm}0.9,\;4.3{\pm}1.7\;and\;49.8{\pm}1.4{\mu}M$, respectively). KR-32570 inhibited the collagen-induced liberation of $[^3H]$arachidonic acid from the platelets in a concentration dependent manner with complete inhibition being observed at $50{\mu}M$. The $TXA_2$ synthase assay showed that KR-32570 also inhibited the conversion of the substrate $PGH_2$ to $TXB_2$ at all concentrations. Furthermore, KR-32570 significantly inhibited the $[Ca^{2+}]_i$ mobilization induced by collagen at $50{\mu}M$, which is the concentration that completely inhibits platelet aggregation. KR-32570 also decreased the level of collagen $(10{\mu}g/mL)$induced secretion of serotonin from the dense-granule contents of platelets, and inhibited the NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. These results suggest that the antiplatelet activity of KR-32570 against collagen-induced platelet aggregation is mediated mainly by inhibiting the release of arachidonic acid, $TXA_2$ synthase, the mobilization of cytosolic $Ca^{2+}$ and NHE-1.

Effects of DC Biases and Post-CMP Cleaning Solution Concentrations on the Cu Film Corrosion

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.276-280
    • /
    • 2010
  • Copper(Cu) as an interconnecting metal layer can replace aluminum (Al) in IC fabrication since Cu has low electrical resistivity, showing high immunity to electromigration compared to Al. However, it is very difficult for copper to be patterned by the dry etching processes. The chemical mechanical polishing (CMP) process has been introduced and widely used as the mainstream patterning technique for Cu in the fabrication of deep submicron integrated circuits in light of its capability to reduce surface roughness. But this process leaves a large amount of residues on the wafer surface, which must be removed by the post-CMP cleaning processes. Copper corrosion is one of the critical issues for the copper metallization process. Thus, in order to understand the copper corrosion problems in post-CMP cleaning solutions and study the effects of DC biases and post-CMP cleaning solution concentrations on the Cu film, a constant voltage was supplied at various concentrations, and then the output currents were measured and recorded with time. Most of the cases, the current was steadily decreased (i.e. resistance was increased by the oxidation). In the lowest concentration case only, the current was steadily increased with the scarce fluctuations. The higher the constant supplied DC voltage values, the higher the initial output current and the saturated current values. However the time to be taken for it to be saturated was almost the same for all the DC supplied voltage values. It was indicated that the oxide formation was not dependent on the supplied voltage values and 1 V was more than enough to form the oxide. With applied voltages lower than 3 V combined with any concentration, the perforation through the oxide film rarely took place due to the insufficient driving force (voltage) and the copper oxidation ceased. However, with the voltage higher than 3 V, the copper ions were started to diffuse out through the oxide film and thus made pores to be formed on the oxide surface, causing the current to increase and a part of the exposed copper film inside the pores gets back to be oxidized and the rest of it was remained without any further oxidation, causing the current back to decrease a little bit. With increasing the applied DC bias value, the shorter time to be taken for copper ions to be diffused out through the copper oxide film. From the discussions above, it could be concluded that the oxide film was formed and grown by the copper ion diffusion first and then the reaction with any oxidant in the post-CMP cleaning solution.

Studies on the Antitumor Activity of Gamisoam-san via Suppressing Angiogenesis and Growth Factor Expression (혈관신생 및 이식암세포증식 억제를 통한 가미소암산의 항암작용연구)

  • Yoon Sung Chan;Ahn Seong Hun;Mun Yean Ja;Kim Jin Kyeong;Choo Young Kug;Jung Kyu Yong;Kim Yeong Mok;Woo Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.969-979
    • /
    • 2003
  • Gamisoamsan is a prescription originated in Soamsan which is known as an anti-cancer remedy in the traditional Korean Medicine. To enhance the synergic effects of anti-cancer activity of Soamsan, this study reconstituted the original components of Soamsan with a slight modification and produced a novel herbal remedy, namely Gamisoamsan. To investigate the effects of Gamisoamsan on anti-cancer reaction, I studied the effects of Gamisoamsan on angiogenesis via chorioallantoic membrane (CAM) assay, corneal neovascularization assay and the effects on expression of growth factor which are VEGF, TGF-β, bFGF and IMUP-1. Anti-cancer effects of Gamisoamsan was also abserved through hematological parameters, tumor volume and survival rate in mice. Gamisoamsan inhibited embryonic angiogenesis of blood vessels in CAM assay and inhibited neovascularization of ral cornea. Gamisoamsan reduced cell proliferation in HT1080 cells and IC50 was 2.18 ㎎/㎖ Gamisoamsan reduced the expression of VEGF, TGF-β, bFGF and IMUP-1 which was known as vascular growth factor and this effects of Gamisoamsan was predominant than VP-16. The treatment of Gamisoamsan decreased the CT-26 cell inoculated-tumor volume in mice colon adenocarcinoma and increased mice survival which was inoculated CT-26 cells. The results of the present study suggest that Gamisoamsan extracts has a potential anti-tumor activity and may be an useful remedy to prevent and/or treat cancer.

rvH1N1 Neuraminidase Inhibitory Activities of Phenolics from Perilla frutescens (L.) and Their Contents in Cultivars and Germplasm

  • Ha, Tae Joung;Lee, Myoung-Hee;Park, Chang-Hwan;Kim, Jung-In;Oh, Eunyoung;Pae, Suk-Bok;Park, Jae Eun;Kim, Sung-Up;Kwak, Do-Yeon
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.404-412
    • /
    • 2018
  • The influenza neuraminidase (NA, E.C. 3.2.1.18), an antiviral, has been the target of high pharmaceutical companies due to its essential role in viral replication cycle. Perilla frutescens (P. frutescens) is used in traditional Chinese medicine for various diseases, such as cold due to wind-cold, headache and cough. In this context, four major polyphenolic compounds including rosmarinic acid-3-O-glucoside (1), rosmarinic acid (2), luteolin (3), and apigenin (4) isolated from P. frutescens were evaluated for their inhibitory effect on recombinant virus H1N1 neuraminidase (rvH1N1 NA). Among the test compounds, rosmarinic acid and luteolin inhibited the rvH1N1 NA with an $IC_{50}$ of 46.7 and $8.4{\mu}M$, respectively. The inhibition kinetics analyzed by the Dixon plots indicated that rosmarinic acid and luteolin were noncompetitive inhibitors and that the inhibition constant, $K_I$, was established as 43.9 and $14.3{\mu}M$, respectively. In addition, 578 genetically diverse accessions and 39 cultivars of P. frutescens were analyzed using HPLC to characterize the diversity of polyphenolic composition and concentration. The individual and total compositions exhibited significant difference (P < 0.05), especially rosmarinic acid which was detected as the predominant metabolite in all accessions (58.8%) and cultivars (62.8%). Yeupsil and Sangback cultivars exhibited the highest rosmarinic acid ($3,393.5{\mu}g/g$) and luteolin ($383.3{\mu}g/g$) content respectively. YCPL177-2 with the high concentration ($889.8{\mu}g/g$) of luteolin may be used as a genetic resource for breeding elite cultivars.

Heterologous Expression of Interferon α-2b in Lactococcus lactis and its Biological Activity against Colorectal Cancer Cells

  • Meilina, Lita;Budiarti, Sri;Mustopa, Apon Zaenal;Darusman, Huda Shalahudin;Triratna, Lita;Nugraha, Muhammad Ajietuta;Bilhaq, Muhammad Sabiq;Ningrum, Ratih Asmana
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.75-87
    • /
    • 2021
  • Type I Interferons (IFNα) are known for their role as biological anticancer agents owing to their cell-apoptosis inducing properties. Development of an appropriate, cost-effective host expression system is crucial for meeting the increasing demand for proteins. Therefore, this study aims to develop codon-optimized IFNα-2b in L. lactis NZ3900. These cells express extracellular protein using the NICE system and Usp45 signal peptide. To validate the mature form of the expressed protein, the recombinant IFNα-2b was screened in a human colorectal cancer cell line using the cytotoxicity assay. The IFNα-2b was successfully cloned into the pNZ8148 vector, thereby generating recombinant L. lactis pNZ8148-SPUsp45-IFNα-2b. The computational analysis of codon-optimized IFNα-2b revealed no mutation and amino acid changes; additionally, the codon-optimized IFNα-2b showed 100% similarity with native human IFNα-2b, in the BLAST analysis. The partial size exclusion chromatography (SEC) of extracellular protein yielded a 19 kDa protein, which was further confirmed by its positive binding to anti-IFNα-2b in the western blot analysis. The crude protein and SEC-purified partial fraction showed IC50 values of 33.22 ㎍/ml and 127.2 ㎍/ml, respectively, which indicated better activity than the metabolites of L. lactis NZ3900 (231.8 ㎍/ml). These values were also comparable with those of the regular anticancer drug tamoxifen (105.5 ㎍/ml). These results demonstrated L. lactis as a promising host system that functions by utilizing the pNZ8148 NICE system. Meanwhile, codon-optimized usage of the inserted gene increased the optimal protein expression levels, which could be beneficial for its large-scale production. Taken together, the recombinant L. lactis IFNα-2b is a potential alternative treatment for colorectal cancer. Furthermore, its activity was analyzed in the WiDr cell line, to assess its colorectal anticancer activities in vivo.

Food Functionality and In Vitro Bioactivity of Olive Flounder Paralichthys olivaceus Roe Concentrates Prepared by Cook-dried Process (가열-건조처리 넙치(Paralichthys olivaceus) 알 농축물의 식품기능성 및 생리활성)

  • In Seong Yoon;Sang in Kang;Jin-Soo Kim;In Sang Kwon;Hyeung Jun Kim;Min Soo Heu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.7-20
    • /
    • 2023
  • Boil-dried concentrate (BDC) and steam-dried concentrate (SDC) were prepared from olive flounder Paralichthys olivaceus roe using the cook-dried process, and their food functionality and in vitro bioactivity were examined. The buffer capacity of BDC and SDC was found to be stronger in the alkaline region than in the acidic region, and the buffer capacity of SDC was superior to that of BDC. The water holding capacities of these concentrates were 7.6 and 7.4 g/g protein, respectively, both of which were significantly lower than that of freeze-dried concentrate (FDC). The solubility of BDC (13.4%) and SDC (12.7%), foaming capacity of BDC (107.7%) and SDC (110.6%), and oil-in-water emulsifying activity index of BDC (7.7 m2/g) and SDC (9.7 m2/g) were all significantly lower than the corresponding values for FDC (P<0.05). The lower food functionality of BDC and SDC compared with FDC can be attributed to the high-temperature denaturation of proteins during the cook-dried process. The 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activities (IC50) of SDC (2.5 mg protein/mL) was 60.4 ㎍/mL, and the angiotensin I converting enzyme inhibitory activity was 80.9%. Olive flounder roe concentrates have good antioxidant and antihypertensive activities, and can be used as materials or ingredients in the processing of seafood and other foods to enhance protein contents and food functionality.