• 제목/요약/키워드: $H_2S$ sensor

검색결과 464건 처리시간 0.023초

박막트랜지스터에 의해 구동되는 이미지센서 (The Image Sensor Operating by Thin Film Transistor)

  • 허창우
    • 한국정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.111-116
    • /
    • 2006
  • 본 연구에서는 비정질 실리콘 박막 트랜지스터를 스위칭소자로 포토센서를 구동 하는 방식의 이미지 센서를 구현하고자 한다. 먼저 PECVD(Plasma Enhanced Chemical Vapor Deposition) 진공 증착장비로 최적의 비정질실리콘 박막을 형성하고, 이 박막을 이용하여 스위칭소자인 박막트랜지스터와 광전변환소자인 광다이오드를 제조한다. 또한 이들을 결합하여 이미지 센서를 형성하고 그 특성 및 동작을 분석하고 최적의 동작특성을 이끌 수 있는 밀착이미지 센서를 제조한다. 제작한 이미지 센서를 측정한 결과 광전변환소자인 photodiode는 암전류의 경우 $\~10^{-l2}A$정도였으며, 광전류 $\~10^{-9}A$정도로서 Iphoto/Idark ${\ge}10^3$ 이상을 이루어 좋은 광전변환 특성을 갖고 있었다. 또한 a-Si:H TFT의 경우 Ioff ${\le}10^{-l2}A$, Ion ${\le}10^{-6}A$ 으로서 Ion/Ioff ${le}10^6$ 이상을 나타냈으며 Vth는 $2\~4$ volts였고, Id는 수 ${\mu}A$ 정도로 photodiode를 스위치하기에 충분한 전류-전압특성을 나타내고 있다. 이미지 센서 전체 동작 특성을 측정하기 위하여 photodiode의 ITO쪽에 -5volts의 역 bias를 가한 상태에서 TFT의 gate에 $70\;{\mu}sec$의 pulse를 가하여 photodiode에서 생성된 광전류 와 암전류를 측정하였다. 이렇게 하여 측정된 전압은 암상태에서 수십 mvolts이고, 광상태에서는 수백 mvolts로 나타나 우수한 이미지센서 특성을 갖고 있음을 확인하였다.

FET형 포도당센서의 특성개선과 이를 이용한 포도당측정기 개발 (Characteristics Improvement of a FET-Type Glucose Sensor and Its Application to a Glucose Meter)

  • 이채향;최상복;이영철;서화일;손병기
    • 센서학회지
    • /
    • 제7권4호
    • /
    • pp.271-278
    • /
    • 1998
  • ISFET를 바탕으로 한 포도당 센서일 경우에 저감도, 드리프트 현상, 긴 응답시간의 문제점들을 가지고 있다. 이러한 이유로, ISFET 포도당센서에 백금 엑츄에이터(Pt actuator)를 내장시켜 반응부산물인 $H_2O_2$를 전기분해하는 전류법적인 엑츄에이션(amperometric actuation) 기법을 도입하여 감도를 높였다. 또한 출력신호의 기준선(baseline)을 확인한 후, $H_2O_2$ 전기분해에 의한 pH 변화분만을 검출하여 출력신호로 사용하는 새로운 측정법을 고안하여 심각한 드리프트를 배제하였다. 이러한 전류법적 엑츄에이션과 측정 기술로써 ISFET 포도당 센서의 동작특성이 개선되었다. 제작된 ISFET 포도당센서는 포도당 농도에 따른 응답의 크기가 30mM의 인산완충용액인 PBS(phosphate buffer solution)에서 약 26mV/decade의 높은 감도와 선형성을 보였다. 이 센서를 사용하여 높은 정밀도를 갖는 휴대용 포도당 측정기를 개발하고 그 특성을 평가하였다.

  • PDF

사출금형 버 발생 방지를 위한 형합면압 측정에 관한 연구 (Study on the Pressure Measurement at Parting Surface to Prevent Flashing in Injection Molds)

  • 최재혁;최순호;태준성;박형필;이병옥
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.73-78
    • /
    • 2011
  • The flashing reduces the part quality and the productivity of the molding process. We developed a contact pressure sensor to detect the flashing immediately. The performance of the sensor was analyzed in a simple 2D simulation. The sensor was applied to an automotive bumper mold with cavity pressure sensors. It showed sensitive output signal for the mold response by the cavity pressure change. It was confirmed that the flashing at the gate area occurred in the filling stage by the pressure increase due to growth of the melt flow length. The sensor output was correlated with the cavity pressure sensor output.

Tunable Electrical Properties of Aligned Single-Walled Carbon Nanotube Network-based Devices: Metallization and Chemical Sensor Applications

  • Kim, Young Lae;Hahm, Myung Gwan
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.535-538
    • /
    • 2017
  • Here we report the tunable electrical properties and chemical sensor of single-walled carbon nanotubes (SWCNTs) network-based devices with a functionalization technique. Formation of highly aligned SWCNT structures is made on $SiO_2/Si$ substrates using a template-based fluidic assembly process. We present a Platinum (Pt)-nanocluster decoration technique that reduces the resistivity of SWCNT network-based devices. This indicates the conversion of the semiconducting SWCNTs into metallic ones. In addition, we present the Hydrogen Sulfide ($H_2S$) gas detection by a redox reaction based on SWCNT networks functionalized with 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) as a catalyst. We summarize current changes of devices resulting from the redox reactions in the presence of $H_2S$. The semiconducting (s)-SWCNT device functionalized with TEMPO shows high gas response of 420% at 60% humidity level compared to 140% gas response without TEMPO functionalization, which is about 3 times higher than bare s-SWCNT sensor at the same RH. These results reflect promising perspectives for real-time monitoring of $H_2S$ gases with high gas response and low power consumption.

Facile in situ Formation of CuO/ZnO p-n Heterojunction for Improved H2S-sensing Applications

  • Shanmugasundaram, Arunkumar;Kim, Dong-Su;Hou, Tian Feng;Lee, Dong Weon
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.156-161
    • /
    • 2020
  • In this study, hierarchical mesoporous CuO spheres, ZnO flowers, and heterojunction CuO/ZnO nanostructures were fabricated via a facile hydrothermal method. The as-prepared materials were characterized in detail using various analytical methods such as powder X-ray diffraction, micro Raman spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy. The obtained results are consistent with each other. The H2S-sensing characteristics of the sensors fabricated based on the CuO spheres, ZnO flowers, and CuO/ZnO heterojunction were investigated at different temperatures and gas concentrations. The sensor based on ZnO flowers showed a maximum response of ~141 at 225 ℃. The sensor based on CuO spheres exhibited a maximum response of 218 at 175 ℃, whereas the sensor based on the CuO/ZnO nano-heterostructure composite showed a maximum response of 344 at 150 ℃. The detection limit (DL) of the sensor based on the CuO/ZnO heterojunction was ~120 ppb at 150 ℃. The CuO/ZnO sensor showed the maximum response to H2S compared with other interfering gases such as ethanol, methanol, and CO, indicating its high selectivity.

나노 박막을 이용한 듀얼 $SnO_2$ 마이크로 가스센서 어레이 (A Dual Micro Gas Sensor Array with Nano Sized $SnO_2$ Thin Film)

  • 정완영
    • 한국정보통신학회논문지
    • /
    • 제10권9호
    • /
    • pp.1641-1647
    • /
    • 2006
  • 나노입자 크기를 가진 얇은 $SnO_2$ 박막을 이용하여 CO 및 $H_2S$에 대한 우수한 감도를 가지는 복합 마이크로 가스센서 어레이를 제작하였다. 나노입자의 박막을 만들기 위해서 약 $2500{\AA}$ 두께의 $SnO_2,\;SnO_2(+Pt),\;SnO_2(+CuO)$ 막을 셰도우마스크를 사용하여 형성 한 후, 이를 $600{\sim}800^{\circ}C$의 온도에서 산화하므로서 나노입자의 $SnO_2$ 모물질의 가스감지 박막을 형성하였다. 실리콘 기판의 마이크로센서의 형태로 제작된 $SnO_2(Pt)$$SnO_2(+CuO)$ 가스센서는 각각 CO 및 $H_2S$ 가스에 대한 매우 우수한 감도를 나타내는 것을 확인하였다.

예비 처리 방법에 따른 박막 SnO2 센서의 가스 감응 특성 (Gas sensing characteristics of thin film SnO2 sensors with different pretreatments)

  • 윤광현;김종원;류기홍;허증수
    • 센서학회지
    • /
    • 제15권5호
    • /
    • pp.309-316
    • /
    • 2006
  • The $SnO_{2}$ thin film sensors were fabricated by a thermal oxidation method. $SnO_{2}$ thin film sensors were treated in $N_{2}$ atmosphere. The sensors with $O_{2}$ treatment after $N_{2}$ treatment showed 70 % sensitivity for 1 ppm $H_{2}S$ gas, which is higher than the sensors with only $O_{2}$ treatment. The Ni metal was evaporated on Sn thin film on the $Al_{2}O_{3}$ substrate. And the sensor was heated to grow the Sn nanowire in the tube furnace with $N_{2}$ atmosphere. Sn nanowire was thermally oxidized in $O_{2}$ environments. The sensitivity of $SnO_{2}$ nanowire sensor was measured at 500 ppb $H_{2}S$ gas. The selectivity of $SnO_{2}$ nanowire sensor compared with thin film and thick film $SnO_{2}$ was measured for $H_{2}S$, CO, and $NH_{3}$ in this study.

Taguchi 실험 계획법에 의한 CH3SH 반도체 악취 가스 센서의 개발 (Development of a Semiconductor Odor Gas Sensor for the Measurement of CH3SH with Taguchi Experimental Design)

  • 김선태;최일환
    • 한국대기환경학회지
    • /
    • 제20권6호
    • /
    • pp.783-792
    • /
    • 2004
  • In this study, a thick-film semiconductor odor gas sensor for the detection of $CH_3$SH was developed using SnO$_2$ as the main substrate and was investigated in terms of its sensitivity and reaction time. In the process of manufacturing the sensor, Taguchi's design of experiment (DOE) was applied to analyze the effects of a variety of parameters, including the substrate, the additives and the fabrication conditions, systematically and effectively. Eight trials of experiments could be possible using the 27 orthogonal array for the seven factors and two levels of condition, which originally demands 128 trials of experiments without DOE. The additives of Sb$_2$O$_{5}$ and PdCl$_2$ with the H$_2$PtCl$_{6}$ ㆍ6$H_2O$ catalyst were appeared to be important factors to improve the sensitivity, and CuO, TiO$_2$, V$_2$O$_{5}$ and PdO were less important. In addition, TiO$_2$, V$_2$O$_{5}$ and PdO would improve the reaction time of a sensor, and CuO, Sb$_2$O$_{5}$, PdCl$_2$ and H$_2$PtCl$_{6}$ㆍ6$H_2O$ were negligible. Being evaluated simultaneously in terms of both sensitivity and reaction time, the sensor showed the higher performance with the addition of TiO$_2$ and PdO, but the opposite results with the addition of CuO, V$_2$O$_{5}$, Sb$_2$O$_{5}$ and PdCl$_2$. The amount of additives were superior in the case of 1% than 4%. H$_2$PtCl$_{6}$ㆍ6$H_2O$ would play an important role for the increase of sensor performance as a catalyst.nce as a catalyst.

Analysis Method of Volatile Sulfur Compounds Utilizing Separation Column and Metal Oxide Semiconductor Gas Sensor

  • Han-Soo Kim;Inho Kim;Eun Duck Park;Sang-Do Han
    • 센서학회지
    • /
    • 제33권3호
    • /
    • pp.125-133
    • /
    • 2024
  • Gas chromatography (GC) separation technology and metal oxide semiconductor (MOS) gas sensors have been integrated for the effective analysis of volatile sulfur compounds (VSCs) such as H2S, CH3SH, (CH3)2S, and (CH3)2S2. The separation and detection characteristics of the GC/MOS system using diluted standard gases were investigated for the qualitative and quantitative analysis of VSCs. The typical concentrations of the standard gases were 0.1, 0.5, 1.0, 5.0, and 10.0 ppm. The GC/MOS system successfully separated H2S, CH3SH, (CH3)2S, and (CH3)2S2 using a celite-filled column. The reproducibility of the retention time measurements was at a 3% relative standard deviation level, and the correlation coefficient (R2) for the VSC concentration was greater than 0.99. In addition, the chromatograms of single and mixed gases were almost identical.

Ag/ZnO-rGO 하이브리드 나노구조 기반 C2H2 가스센서의 제작과 그 특성 (Fabrication of C2H2 Gas Sensors Based on Ag/ZnO-rGO Hybrid Nanostructures and Their Characteristics)

  • 이관우;정귀상
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.41-46
    • /
    • 2015
  • In this work, pure hierarchical ZnO structure was prepared using a simple hydrothermal method, and Ag nanoparticles doped hierarchical ZnO structure was synthesized uniformly through photochemical route. The reduced graphene oxide (rGO) has been synthesized by typical Hummer's method and reduced by hydrazine. Prepared Ag/ZnO nanostructures are uniformly dispersed on the surface of rGO sheets using ultrasonication process. The synthesized samples were characterized by SEM, TEM, EDS, XRD and PL spectra. The average size of prepared ZnO microspheres was around $2{\sim}3{\mu}m$ and showed highly uniform. The average size of doped-Ag nanoparticles was 50 nm and decorated into ZnO/rGO network. The $C_2H_2$ gas sensing properties of as-prepared products were investigated using resistivity-type gas sensor. Ag/ZnO-rGO based sensors exhibited good performances for $C_2H_2$ gas in comparison with the Ag/ZnO. The $C_2H_2$ sensor based on Ag/ZnO-rGO had linear response property from 3~1000 ppm of $C_2H_2$ concentration at working temperature of $200^{\circ}C$. The response values with 100 ppm $C_2H_2$ at $200^{\circ}C$ were 22% and 78% for Ag/ZnO and Ag/ZnO-rGO, respectively. In additions, the sensor still shows high sensitivity and quick response/recovery to $C_2H_2$ under high relative humidity conditions. Moreover, the device shows excellent selectivity towards to $C_2H_2$ gas at optimal working temperature of $200^{\circ}C$.