• Title/Summary/Keyword: $H_2S$ Corrosion

Search Result 306, Processing Time 0.026 seconds

High Temperature Corrosion of Cr(III) Coatings in N2/0.1%H2S Gas

  • Lee, Dong Bok;Yuke, Shi
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.111-116
    • /
    • 2019
  • Chromium was coated on a steel substrate by the Cr(III) electroplating method, and corroded at $500-900^{\circ}C$ for 5 h in $N_2/0.1%H_2S-mixed$ gas to study the high-temperature corrosion behavior of the Cr(III) coating in the highly corrosive $H_2S-environment$. The coating consisted of (C, O)-supersaturated, nodular chromium grains with microcracks. Corrosion was dominated by oxidation owing to thermodynamic stability of oxides compared to sulfides and nitrides. Corrosion initially led to formation of the thin $Cr_2O_3$ layer, below which (S, O)-dissolved, thin, porous region developed. As corrosion progressed, a $Fe_2Cr_2O_4$ layer formed below the $Cr_2O_3$ layer. The coating displayed relatively good corrosion resistance due to formation of the $Cr_2O_3$ scale and progressive sealing of microcracks.

Investigation of Sweet and Sour Corrosion of Mild Steel in Oilfield Environment by Polarization, Impedance, XRD and SEM Studies

  • Paul, Subir;Kundu, Bikramjit
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.249-256
    • /
    • 2018
  • Metallic structures in the oil and gas production undergo severe degradation due to sweet and sour corrosion caused by the presence of $CO_2$ and $H_2S$ in the fluid environment. The corrosion behavior of 304 austenitic stainless was investigated in the presence of varying concentrations of $CO_2$ or $H_2S$ and $CO_2+H_2S$ to understand the effect of the parameters either individually or in combination. Potentiodynamic polarization study revealed that a small amount of $CO_2$ aided in the formation of calcareous deposit of protective layer on passive film of 304 steel, while increase in $CO_2$ concentration ruptured the layer resulting in sweet corrosion. The presence of $S^{2-}$ damaged the passive and protective layer of the steel and higher levels increased the degradation rate. Electrochemical impedance studies revealed lower polarization resistance and impedance at higher concentration of $CO_2$ or $H_2S$, supporting the outcomes of polarization study. XRD analysis revealed different types of iron carbides and iron sulphides corresponding to sweet and sour corrosion as the corrosion products, respectively. SEM analysis revealed the presence of uniform, localized and sulphide cracking in sour corrosion and general corrosion with protective carbide layer amid for sweet corrosion.

Effects of Na2S, NaCl, and H2O2 Concentrations on Corrosion of Aluminum (AA1100의 부식에 미치는 Na2S, NaCl, H2O2 농도의 영향)

  • Lee, Ju Hee;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.312-317
    • /
    • 2019
  • The objective of this study was to investigate the corrosion behavior of aluminum (AA1100) in a mixed solution of 0 ~ 0.1 g/L Na2S + 0.3 ~ 3 g/L NaCl + 0 ~ 10 mL/L H2O2. Potentiodynamic polarization tests were performed. Effects of solution compositions on corrosion potential, corrosion rate, and pitting potential of aluminum were statistically analyzed with a regression model. Results suggested that localized corrosion susceptibility of aluminum was increased in the solution with increasing concentration of NaCl because the pitting potential was lowered linearly with increasing NaCl concentration. On the contrary, H2O2 mitigated the galvanic corrosion of aluminum by increasing the corrosion potential. It also mitigated localized corrosion by increasing the pitting potential of aluminum. Na2S did not exert a noticeable effect on the corrosion of aluminum. These effects of different chemical species at various concentrations were independent of each other. Synergy or offset effect was not observed.

High-Temperature Corrosion of T92 Steel in N2/H2O/H2S-Mixed Gas

  • Shi, Yuke;Kim, Min Jung;Park, Soon Yong;Abro, M. Ali;Yadav, Poonam;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.125-128
    • /
    • 2016
  • The ASTM T92 steel was corroded at $600^{\circ}C$ and $800^{\circ}C$ at 1 atm of $N_2/3.1%H_2O/2.42%H_2S-mixed$ gas. The formed scales were thick and fragile. They consisted primarily of the outer FeS scale and the inner (FeS, $FeCr_2S_4$)-mixed scale containing a small amount of the $Cr_2O_3$ scale. This indicated that corrosion occurred mainly via sulfidation rather than oxidation due to the $H_2S$ gas. Since FeS was present throughout the whole scale, T92 steel was non-protective, displaying high corrosion rates.

Analysis of Likelihood of Failure for the Corrosion of High Temperature $H_2S/H_2$ through Risk Based-Inspection (위험기반검사에서 고온 $H_2S/H_2$ 부식에 의한 사고발생 가능성 해석)

  • Lee Hern-Chang;Lee Joong-Hee;Kim Tae-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.2
    • /
    • pp.61-70
    • /
    • 2006
  • The likelihood of failure by the corrosion of high temperature $H_2S/H_2$, which affect to a risk of facilities, was analyzed through the risk based-inspection using API-581 BRD. We found that the corrosion rate was increased as temperature and $H_2S$ concentration were increased. Also, the technical module subfactor(TMSF) was increased as an used you increased, material thickness decreased, inspection number decreased, and inspection effectiveness increased. In these conditions, the maximum value of TMSF was not varied, but the TMSF was sensitively varied at low temperature for high concentration of $H_2S$.

Review of the Usefulness of Inhibitors for Reducing the Corrosion of Iron in $H_2S$ Environments

  • Kim, Han-Sang;Yoon, Eun-Sub
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • The influence of $H_2S$ on the corrosion of iron and the corrosion prevention mechanism of an inhibitor was investigated with a differential capacitance measurement and a weight loss measurement method. The results show that $H_2S$ accelerates both the anodic iron dissolution and the cathodic hydrogen evolution in most cases. However, $H_2S$ acts as an inhibitor of the corrosion of iron under certain special conditions. An EIS method is proposed to explain the ability of inhibitors.

EFFECTS OF AMINES ON COPPER ETCHING WITH H$_2$SO$_4$-$H_2O$$_2$ SYSTEMS

  • Kobayashi, Katsuyoshi;Minami, Naoki;Chiba, Atsushi
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.377-384
    • /
    • 1999
  • The corrosion of copper in $H_2$$SO_4$ $-H_2$$O_2$ etching solutions with amines was investigated at various flow rates (v). Amine additives give a retardation of $H_2$$O_2$ decompositions, increases in both corrosion rates and etch factor, and a protection of etched copper surfaces. However n-alkylamine additives acted as corrosion inhibitors at v < 10cm/s, those acted as corrosion accelerators at v of 10-220cm/s. The maximum corrosion rate was obtained with about 0.1 molal concentration of additives. Steric effects of substituted groups suppressed the acceleration of copper corrosion. The increases in both corrosion rates and flow rates gave the increase in etch factor. Corrosion rates with n-alkylamine increased in the order of ethylamine < n-propylamine < n-butylamine, those with butylamine isomers tert- < sec- < iso- < n-butylamine, and those with amine additives of different number of substituted groups tri- < di- < mono-n-propylamine, respectively.

  • PDF

The Importance of Corrosion Control and Protection Technology in the Refinery

  • Kim, Byong Mu;Oh, Sung Lyong
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2007
  • This paper presents the importance of corrosion control and protection technology with a real case study of heater tube rupture damaged by High temperature H2S-H2 corrosion in the refinery. The heater was operated at the Hydrocracking unit and the operation temperature and pressure was $340^{\circ}C$ and $18kg/cm^{3}$ respectively. Top side of the convection tube was thinned by high temperature hydrogen sulfide and hydrogen gas as a uniform corrosion and finally ruptured under operation pressure. Damaged area (Convection tube zone) was blocked by protection wall, so it was impossible to inspect with conventional nondestructive examination. Instead the elbow area which is out of the protection wall was inspected regularly to evaluate the corrosion rate of convection tube indirectly. However the operation temperature and the phase of the process stream was different between inside the chamber and outside the chamber. As a result, it caused severe corrosion to the horizontal convection tube inside the chamber comparing to the elbow outside the chamber. Finally convection tube was corroded more rapidly than the elbow and ruptured after 13 years operation. Because of the rupture, the heater was totally burned and the operation was stopped for 3 months until it has been reconstructed. To prevent this kind of corrosion problem and accident, corrosion control should be strengthened and protection technology should be improved.

Corrosion Behaviour of Water Pipes (수도관의 부기거동에 관한 연구)

  • 김원만;박영식
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • Corrosion of pipes Is one of the most serious problems in the maintenance of water worlds. Corrosion is promoted not only by physical factors such as temperature, but also by electrochemical factors including concentration of soluble metal ions, chlorine ion, pH, DO and microorganisms. Corrosion products also affect corrosion rate. In this research, study results are summarized as follows ; 1) Corrosion test was performed for 4 weeks at $70^{\circ}C$, pH 7.0 with specimens of 4 types of metal materials used as service pipes. Corrosion rate and S.E.M were analyzed. The results were showed that corrosion 1.ate of carbon steel pipe was 4.10~5.22 $mg/\textrm{cm}^2$ . week, galvanized steel pipe 0.98~1.34$mg/\textrm{cm}^2$. week, Copper pipe 0.02~0.04$mg/\textrm{cm}^2$. week, stainless steel pipe 0.05~ 0.10$mg/\textrm{cm}^2$ . week. 2) When corrosion rate was tested for tile types of pipes at pH 7 and both $25^{\circ}C$ and $75^{\circ}C$, avaerage corrosion rate for 6 weeks at $25^{\circ}C$ Ivas 2.26$mg/\textrm{cm}^2$ . week in carbon steel pipe, 1.99$mg/\textrm{cm}^2$. week in galvanized steel pipe, 0.26 $mg/\textrm{cm}^2$. week in stainless steel pipe. At $87^{\circ}C$, average corrosion rate for 4 weeks u.3s 4.56 $mg/\textrm{cm}^2$. week in carbon steel pipe,

  • PDF

Corrosion of castable refractory in H2O/N2/H2S mixed gas at 900℃ (H2O/N2/H2S 혼합가스 분위기 900℃에서 캐스타블 내화물의 부식)

  • Shin, Min;Yoon, Jong-Won;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.99-104
    • /
    • 2017
  • Refractories used in low-rank coal gasification reactors are usually exposed in a highly corrosive $H_2S$ gas at less than $1000^{\circ}C$, and their mechanical properties such as erosion resistance and fracture strength decline with the exposure time. However, the cause of the degradation of the mechanical properties has little reported yet. In this paper, two kinds of castable refractories with different refractoriness had been exposed in a $H_2O/N_2/H_2S$ mixed gas with high $H_2S$ content for 100 hours at $900^{\circ}C$, and the changes of microstructure, crystalline phases and erosion resistance were compared before and after the corrosion test. The weight of the refractories decreases due to the elution of silica in the specimens after the corrosion test. The capillary porosities of the samples are reduced, but the erosion resistance of the samples is fatally weakened after the corrosion test. There also are changes in constituent phases; dmitryivanovite ($CaAl_2O_4$) and amorphous silica ($SiO_2$) disappear, and gypsum ($CaSO_4{\cdot}2H_2OS$) and kaolinite ($Al_2Si_2O_5(OH)_4$) newly appear after the corrosion test. It is obvious that the phase change from dmitryivanovite that works as a binding agent in the castable refractory to gypsum is the main reason of the degradation of the erosion resistance, because the mechanical properties of gypsum are much poorer than those of dmitryivanovite.