• Title/Summary/Keyword: $H_2O_2$ 산화

Search Result 1,882, Processing Time 0.03 seconds

Effects of Lime and Humic Acid on the Cadmium Availability and its Uptake by Rice in Paddy Soils (논토양중 카드뮴 유효도와 수도의 흡수이행에 미치는 석회 및 Humic acid 시용효과)

  • Kim, Min-Kyeong;Kim, Won-Il;Jung, Goo-Bok;Park, Kwang-Lai;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • This study was conducted to how the effect of lime and humic acid on cadmium availability and ie uptake by plant grown in contaminated paddy soils with heavy metal. The treatment levels of lime were 2.5 and 5.0 ton/ha and that of humic acid were 1 and 2%. The contents of 0.1N HCl extractable Cd were reduced with lime and humic acid and were negatively correlated with CEC as well as soil pH. The sequential extraction procedure was used to fractionate the heavy metals in soils into the designated from exchangeable (0.5 M $KNO_3$) water soluble ($H_2O$), organically bound (0.5 M NaOH), carbonate (0.05 M $Na_{2-}$ EDTA) and sulfide/residual (4 M $HNO_3$). In soil amended with 2.5 ton/ha lime and 1% humic acia che- mical forms of Cd at tillering stage were predominant exchangeable + water soluble extractable Cd, whereas that at harvesting stage were predominant carbonate + sulfide/residual extractable Cd. The exchangeable forms of Cd in soil with lime and humic acid were negatively correlated with soil pH during the harvesting period. Total absorbed Cd of paddy rice tended to occur in the order of root > stem > leaf > brown rice. Cd contents of brown rice with lime and humic acid treatment were 0.09 and 0.08 mg/kg, respectively. That were lower than control, 0.20 mg/kg. It could be that treatment of lime and humic acid in polluted soil by heavy metals would reduce the uptake of heavy metals by piano and be a temporary method of reclamation at the highly heavy Metal contaminated soils.

A Study on the Oxidation Behaviors of Power Plant Valve Materials under the Ultra Super Critical Condition (초초 임계 화력 발전소용 밸브 소재의 산화 거동)

  • Lee, J.S.;Cho, T.Y.;Yoon, J.H.;Joo, Y.G.;Song, K.O.;Cho, J.Y.;Kang, J.H.;Lee, S.H.;Uhm, K.W.;Lee, J.W.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • Recently ultra-supercritical steam power plants operate at $1000^{\circ}F$ ($538^{\circ}C$) and 3500 psi (24.1 MPa). Thermal efficiency of power plant will be increased about 2% if steam temperature increases from $1000^{\circ}F$ to $1150^{\circ}F$ ($621^{\circ}C$). In this study valve materials Incoloy901 (IC901) and Inconel718 (IN718) were nitrided to improve the surface hardness and solid lubrication function of the valve materials. The hardness of both IC901 and IN718 increased about two times by ion nitriding. IC901, IN718 and their nitrided specimens were corroded under ultra super-critical condition (USC) of $621^{\circ}C$. and 3600 psi (24.8 MPa) for 2000 hours. Oxidations of both IC901 and IN718 were very small due to the formation of protective oxide layer on the surface. But the corrosion resistance of both nitrided specimens decreased because of the formation of non-protective nitride layer of $Fe_{4}N$, $Fe_{2}N$ and CrN on the surface layer. The hardness of both nitrided IC901 and IN718 at $20{\mu}m$ depth from the surface decreased about 30% and 20% respectively by USC 2000 hours.

Effect of Relative Humidity on Physiology and Antioxidant Metabolism of Grafted Watermelon Seedlings (상대습도가 수박 접목묘의 생리 및 항산화 대사에 미치는 영향)

  • Wei, Hao;Manivannan, Abinaya;Muneer, Sowbiya;Kim, SooHoon;Ya, Liu;Park, Ji Eun;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.351-358
    • /
    • 2016
  • This study investigated the effect of different relative humidity (RH) regimes on graft healing of grafted seedlings of watermelon (Citrullus vulgaris Schrad.). Two watermelon cultivars ('Speed' and 'Sambok Honey') were grafted onto the 'RS-Dongjanggun' bottle gourd rootstock (Lagenaria siceraria Stanld.) and the grafted seedlings were maintained under one of three relative humidity regimes, 95-96% [1.1-0.8 (day) or $0.8-0.6(night)\;g{\cdot}m^{-3}$ vapor pressure deficit (VPD)], 97-98% [ 0.7-0.4 (day) or $0.5-0.3(night)\;g{\cdot}m^{-3}$ (VPD)], or 99-100% [0.3-0.0 (day) or $0.2-0.0(night)\;g{\cdot}m^{-3}$ (VPD)] according to the Mollier diagram based on the air temperature of $25^{\circ}C\;day/18^{\circ}C\;night$ with 16 h photoperiod per day. Among the RH treatments, 97-98% significantly increased plant height and fresh weight of the rootstock and scion of the 'Speed' and it also enhanced the graft union connection of both cultivars after two days of grafting. However, plant height and thickness of the scion of 'Sambok Honey' was increased by the 99-100% RH treatment. Furthermore, both cultivars grown in the 95-96 and 97-98% RH treatments consisted of lower levels of endogenous $H_2O_2$ and less activities of antioxidant enzymes which illustrated the occurrence of less oxidative stress. Hence, the results of this study identified the optimal RH level for the graft healing of watermelon seedlings.

Black Sesame Ethanolic Extract Promotes Melanin Synthesis (Melanin 합성을 촉진하는 흑임자 에탄올추출물의 효능)

  • Jeon, Sojeong;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1452-1461
    • /
    • 2017
  • Melanin production by melanocytes in human hair follicles decreases with time and leads to the graying process, which is a phenotype of human aging and an index of aging. The reduction in melanin production is the result of decreased tyrosinase activity in hair follicles and an accumulation of active oxygen species, such as hydrogen peroxide. This study investigated antioxidant effects and melanin-promoting effects in B16F1 cells treated with black sesame ethanolic nonpolar-soluble extract (SBEEO) and black sesame ethanolic polar-soluble extract (SBEEP). In antioxidation experiments, both SBEEP and SBEEO did not eliminate 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical, but SBEEO at $64{\mu}g/ml$ showed low reducing power. SBEEP exerted cytotoxic effects at concentrations greater than $8{\mu}g/ml$, whereas SBEEO showed cytotoxic effects at concentrations greater than $4{\mu}g/ml$. SBEEP and SBEEO induced melanin synthesis, tyrosinase activity, and DOPA oxidase activity in vitro. In live cells, melanin synthesis was greater in the SBEEP treatment group as compared with that in the SBEEO treatment group. SBEEP stimulated melanin synthesis by modulating the expression of tyrosinase-related protein-2 (TRP-2), which is an important enzyme in melanin synthesis. These results imply that SBEEP obtained from black sesame ethanolic extract may have the potential to improve melanin synthesis.

Anti-skin aging activities of ethanol extract from Echinodorus cordifolius L. in human keratinocytes (물수선화 에탄올 추출물의 피부 노화 억제 효과)

  • Haeun Mun;Seung-Hong Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.405-412
    • /
    • 2022
  • Echinodorus cordifolius (L.) is an aquatic plant in the family Alismataceae. The anti-skin aging activity of E. cordifolius (L.) has not been yet reported. Therefore, the objective of the present study was to prepare 70% ethanol extract (ECEE) from E. cordifolius (L.) and investigate their antioxidant and anti-hyaluronidase activities for confirm the potential of anti-skin aging. ECEE showed good activities of DPPH, hydrogen peroxide scavenging, and hyaluronidase inhibition, with EC50 and IC50 values of 31.4, 300, and 450 ㎍/mL, respectively. ECEE also significantly improved cell viability and inhibited intracellular reactive oxygen species dose-dependently against 1 mM hydrogen peroxide-induced oxidative stress in immortalized human keratinocytes (HaCaT cells). Furthermore, ECEE upregulated hyaluronic acid (HA)-synthesizing enzyme hyaluronan synthase 2 (HAS2) expression level, but downregulated expression level of HA-degrading enzyme hyaluronidase 2, resulting in increased HA production in HaCaT cells. Taken together, these results suggest that ECEE shows antioxidant and anti-hyaluronidase potential and could be a functional cosmetic ingredients for anti-skin aging.

Effect of Boswellia serrata Extracts on Degenerative Osteoarthritis in vitro and in vivo Models (보스웰리아 추출물의 골관절염 억제 효과 연구)

  • Nam, Da-Eun;Kim, Ok Kyung;Shim, Tae Jin;Kim, Ji Hoon;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.5
    • /
    • pp.631-640
    • /
    • 2014
  • The inhibitory effects of Boswellia serrata (BW) extracts on degenerative osteoarthritis were investigated in primary-cultured rat cartilage cells and a monosodium-iodoacetate (MIA)-induced osteoarthritis rat model. To identify the protective effects of BW extract against $H_2O_2$ ($800{\mu}M$, 2 hr) in vitro, cell survival was measured by MTT assay. Cell survival after $H_2O_2$ treatment was elevated by BW extract at a concentration of $20{\mu}g/mL$. In addition, BW extract treatment significantly reduced and normalized the productions of pro-inflammatory factors, nuclear transcription factor ${\kappa}B$, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and interleukin-6 at a concentration of $20{\mu}g/mL$. Treatment of chondrocytes with BW extract significantly reduced 5-lipoxygenase activity and production of prostaglandin E2, especially at a concentration of $10{\sim}20{\mu}g/mL$. For the in vivo animal study, osteoarthritis was induced by intra-articular injection of MIA into knee joints of rats. Consumption of a diet containing BW extract (100 and 200 mg/kg) for 35 days significantly inhibited the development and severity of osteoarthritis in rats. To determine the genetic expression of arthritic factors in articular cartilage, real-time PCR was applied to measure matrix metalloproteinases (MMP-3, MMP-9, and MMP-13), collagen type I, collagen type II, and aggrecan, and BW extract had protective effects at a concentration of 200 mg/kg. In conclusion, BW extract was able to inhibit articular cartilage degeneration by preventing extracellular matrix degradation and chondrocyte injury. One can consider that BW extract may be a potential therapeutic treatment for degenerative osteoarthritis.

Antioxidant Effect of Extracts from 9 Species of Forest Plants in Korea (국내 9종 산림식물 추출물의 항산화 효능)

  • Sim, Wan-Sup;Lee, Jong Seok;Lee, Sarah;Choi, Sun-Il;Cho, Bong-Yeon;Choi, Seung-Hyun;Han, Xionggao;Jang, Gill-Woong;Kwon, Hee-Yeon;Choi, Ye-Eun;Kim, Jong-Yea;Kim, Jong-Dai;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.4
    • /
    • pp.404-411
    • /
    • 2019
  • This study was carried out to investigate the antioxidant effects of extracts from 9 species of forest plants in Korea. DPPH, ABTS, $NaNO_2$, hydrogen peroxide radical scavenging activity and reducing power activity were evaluated to measure the antioxidant activities of plant extracts. As a result, Geranium thunbergii has been identified as the most effective antioxidant resource. Also, total phenolic content was highest in Geranium thunbergii ($303.94{\pm}0.63mg\;GAE/g$) among 9 species extracts. Total flavonoid content was highest in Rosa multiflora ($24.32{\pm}0.22mg\;QE/g$) and proanthocyanidin content was highest in Vitis ficifolia ($279.00{\pm}4.58mg\;CE/g$) among 9 species extracts. In addition, the protective effect of plant extracts in $H_2O_2-induced$ human dermal fibroblast (HDF) cell systems were also assessed. Significant protective effects in $H_2O_2-induced$ human dermal fibroblast (HDF) cell systems were found in all plant extracts, especially in Geranium thunbergii. These results suggest that Geranium thunbergii could be a potential natural resource for antioxidant activity.

Suppressive Effect of Green Tea Seed Coat Ethyl Acetate Fraction on Inflammation and Its Mechanism in RAW264.7 Macrophage Cell (RAW264.7 Macrophage Cell에서 녹차씨껍질 에틸아세테이트 분획의 염증억제 효과 및 기전 연구)

  • Noh, Kyung-Hee;Jang, Ji-Hyun;Min, Kwan-Hee;Chinzorig, Radnaabazar;Lee, Mi-Ock;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.625-634
    • /
    • 2011
  • Green tea seed coat (GTSC) was extracted with 100% ethanol for 4 hr and then fractionated with petroleum ether (PE), ethyl acetate (EtOAC) and butanol (BuOH). The EtOAC fraction showed the highest level in total phenol contents and the lowest level in nitric oxide (NO) production in LPS-stimulated RAW264.7 macrophage cell. Thus, this study was carried out to investigate the anti-inflammatory and its mechanisms of GTSC EtOAC fraction in LPS-stimulated RAW264.7 macrophage cell. GTSC EtOAC fraction contained EGC ($1146.48{\pm}11.01\;{\mu}g/g$), tannic acid ($966.99{\pm}32.24\;{\mu}g/g$), EC ($70.88{\pm}4.39\;{\mu}g/g$), gallic acid ($947.61{\pm}1.03\;{\mu}g/g$), caffeic acid ($37.69{\pm}1.46\;{\mu}g/g$), ECG ($35.46{\pm}3.19\;{\mu}g/g$), and EGCG ($15.53{\pm}0.09\;{\mu}g/g$) when analyzed by HPLC. NO production was significantly (p<0.05) suppressed in a dose-dependent manner with an $IC_{50}$ of $80.11\;{\mu}g$/mL. Also prostaglandin $E_2$ level was also inhibited in a dose-dependent manner. Moreover, iNOS protein expression was suppressed in dose-dependent manner but COX-2 gene expression was not affected. Total antioxidant capacity and glutathione (GSH) levels were enhanced more than the LPS-control. Expressions of antioxidative enzymes including catalase, GSH-reductase and Mn-SOD were elevated compared to LPS-control. Nuclear p65 level was decreased in the GTSC EtOAC fraction in a dose-dependent manner. These results indicate that GTSC EtOAC fraction inhibit oxidative stress and inflammatory responses through elevated GSH levels, antioxidative enzymes expressions and suppression of iNOS expression via NF-${\kappa}B$ down-regulation.

Comparison of antioxidant capacity of protein hydrolysates from 4 different edible insects (식용곤충별 단백가수분해물의 항산화 활성 비교)

  • Jang, Hyun-Young;Park, Chae-Eun;Lee, Syng-Ook
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.480-485
    • /
    • 2019
  • The present study was conducted to compare antioxidant capacities of protein hydrolysates from four different edible insects (Protaetia brevitarsis larvae, Allomyrina dichotoma larvae, Gryllus bimaculatus imago, and Tenebrio molitor larvae) which have recently been registered as food varieties in Korea. Protein hydrolysates were prepared from each insect using enzymatic hydrolysis using alcalase, and were then separated into a fraction containing ${\leq}3kDa$. According to $RC_{50}$ values and trolox equivalent antioxidant capacity results obtained from five different antioxidant analyses, the Gryllus bimaculatus (GB) hydrolysate showed relatively high levels of antioxidant capacity and, in particular, the GB hydrolysate showed considerably strong antioxidant activities in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and in ferric reducing antioxidant power (FRAP) assays. The GB hydrolysate also showed the strongest inhibitory effect on peroxidation of linoleic acid, and its rate of inhibition at $100{\mu}g/mL$ on day 3 of treatment was 60.26%. These results suggest that protein hydrolysates from edible insects including GB represent potential sources of natural antioxidants.

The Effect of Extrusion Temperature on Microstructure and Thermoelectric Properties of Rapidly Solidified P-type $P-type Bi_{0.5}Sb_{1.5}Te_3$ alloy (급속응고된 $P-type Bi_{0.5}Sb_{1.5}Te_3$ 합금 열전재료의 미세조직과 열전특성에 미치는 압출 온도의 효과)

  • 이영우;천병선;홍순직;손현택
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.28-28
    • /
    • 2001
  • $Bi_2Te_3$계 열전반도체 재료는 200 ~ 400K 정도의 저온에서 에너지 변환 효율이 가장 높은 재료로서 열전냉각 및 발전재료로 제조볍 및 특성에 관한 많은 연구가 진행되어 왔다. 전자냉각 모듈의 제조에는 P형 및 N형 $Bi_2Te_3$계 단결정이 주로 사용되고 있으나. $Bi_2Te_3$ 단결정은 C축에 수직한 벽개면을 따라 균열이 쉽게 전파하기 때문에 소자 가공사 수윤 저하가 가장 큰 문제점으로 지적되고 있다. 이에 따라 최근 열전재료의 가공방법에 따른 회수율 증가 및 열전특성 향상에 관한 열간압출, 단조와 같은 연구가 활발히 이루어지고 있다. 본 연구는 가스분사법(gas atomizer)을 이용하여 용질원자 편석의 감소, 고용도의 증가,균일고용체 형성, 결정립미세화 둥 급속응고의 장점을 이용하여 화학적으로 균질한$Bi_2Te_3$계 열전재료 분말을 제조하고, 제조된 분발을 압출가공하여 기계적성질, 소자의 가공성 및 열전 성능 지수율 향상시키는데 연구 목적이 있다. 본 설험에서는 99.9%이상의 고순도 Bi. Te. Se. Sb를 이용하여, 고주파 유도로에서 Ar 분위기로 용융하고, 가스분사법를 이용하여 균질한 $Bi_2Te_3$계 열전재료 분만을 제조하였다. 분말표면의 산화막을 제거하기 위하여 수소분위기에서 환원처리를 행하였고, 된 분말을 Al 캔 주입하여 냉간성형 한 후 진공중에서 압출온도를 변화시켜 열간압출 가공을 행하였다. 압출 온도변화에 따른 압출재의 미세조직 및 열전특성에 중요한 영향을 미치는 C면 배향에 대한 결정방위 해석, 압출재의 압축강도 등을 분석하였으며, 압출온도에 따삼 미세조직 변화와 결정방위의 변화에 따른 열전특성의 관계를 해석하였다성시켰고 이들이 산인 HNO3에서 녹았기 때문이다. 본 연구에서 개발된 새로운 에칭 용액인 90H2O2 - 10HNO3 (vol%)의 에칭 원리가 똑같이 적용 가능한 다른 종류의 초경 합금에서도 사용이 가능할 것으로 판단된다.로 판단된다.멸과정은 다음과 같다. 출발물질인 123 분말이 211과 액상으로 분해될 때 산소가스가 배출되며, 이로 인해 액상에서 구형의 기공이 생성된다. 이들 중 일부는 액상으로 채워져 소멸되나, 나머지는 그대로 남는다. 특히, 시편 중앙에 서는 수십-수백 마이크론 크기의 커다란 기공이 다수 관찰된는데, 이는 기공의 합체로 만들어진 것이다. 포정반응 열처리 시 기공 소멸로 만들어진 액상포켓들은 주변 211 입자와 반응하여 123 영역으로 변한다. 이곳은 다른 지역과 비교하여 211 밀도 가 낮기 때문에, 미반응 액상이 남거나 211 밀도가 낮은 123 영역이 된다. 액상으로 채워지지 못한 구형의 기공들 중 다수가 123 결정 내로 포획되며, 그 형상은 액상/ 기공/고상 계면에너지에 의해 결정된다.단의 경우, 파단면이 매끄럽고 파변상의 결정립도 매우 미세하였으며, 산확물 의 용집도 찾아보기 어려웠 나, 접합부 파단의 경우에는 파변의 굴곡이 비교척 심하고 연성 입계파괴의 형태를 보였£며, 결정립도 모채부 파단의 경우에 비해 조대하였다. 조대하였다. 셋째, 주상기간 중 총 에너지 유입률 지수와 $Dst_{min}$ 사이에 높은 상관관계가 확인되었다. 특히 환전류를 구성하는 주요 입자의 에너지 영역(75~l13keV)에서 가장 높은(0.80) 상관계수를 기록했다. 넷째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰 자기폭풍일수록 현저했다. 주상에서 관측된 이러한 특성은 서브스톰 확장기 활동이 자기폭풍의

  • PDF