Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.12.1452

Black Sesame Ethanolic Extract Promotes Melanin Synthesis  

Jeon, Sojeong (Department of Chemistry, Dong-Eui University)
Kim, Moon-Moo (Department of Applied Chemistry, Dong-Eui University)
Publication Information
Journal of Life Science / v.27, no.12, 2017 , pp. 1452-1461 More about this Journal
Abstract
Melanin production by melanocytes in human hair follicles decreases with time and leads to the graying process, which is a phenotype of human aging and an index of aging. The reduction in melanin production is the result of decreased tyrosinase activity in hair follicles and an accumulation of active oxygen species, such as hydrogen peroxide. This study investigated antioxidant effects and melanin-promoting effects in B16F1 cells treated with black sesame ethanolic nonpolar-soluble extract (SBEEO) and black sesame ethanolic polar-soluble extract (SBEEP). In antioxidation experiments, both SBEEP and SBEEO did not eliminate 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical, but SBEEO at $64{\mu}g/ml$ showed low reducing power. SBEEP exerted cytotoxic effects at concentrations greater than $8{\mu}g/ml$, whereas SBEEO showed cytotoxic effects at concentrations greater than $4{\mu}g/ml$. SBEEP and SBEEO induced melanin synthesis, tyrosinase activity, and DOPA oxidase activity in vitro. In live cells, melanin synthesis was greater in the SBEEP treatment group as compared with that in the SBEEO treatment group. SBEEP stimulated melanin synthesis by modulating the expression of tyrosinase-related protein-2 (TRP-2), which is an important enzyme in melanin synthesis. These results imply that SBEEP obtained from black sesame ethanolic extract may have the potential to improve melanin synthesis.
Keywords
Black sesame; melanin; tyrosinase; TRP-1; TRP-2;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Narasimhulu, C. A., Selvarajan, K., Burge, K. Y., Litvinov, D., Sengupta, B. and Parthasarathy, S. 2016. Water-soluble components of sesame oil reduce inflammation and atherosclerosis. J. Med. Food 19, 629-637.   DOI
2 Ning, W., Wang, S., Liu, D., Fu, L., Jin, R. and Xu, A. 2016. Potent effects of peracetylated (-)-epigallocatechin-3-gallate against hydrogen peroxide.induced damage in human epidermal melanocytes via attenuation of oxidative stress and apoptosis. Clin. Exp. Dermatol. 41, 616-624.   DOI
3 Pandhi, D. and Khanna, D. 2013. Premature graying of hair. Indian J. Dermatol. Venereol. Leprol. 79, 641.   DOI
4 Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J. and Valko, M. 2017. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 38, 592-607.   DOI
5 Prasad, N., Sanjay, K., Prasad, D. S., Vijay, N. and Kothari, R. 2012. A review on nutritional and nutraceutical properties of sesame. J. Nutr. Food Sci. 2, 1-6.
6 Schallreuter, K. U., Rubsam, K., Gibbons, N. C., Maitland, D. J., Chavan, B., Zothner, C., Rokos, H. and Wood, J. M. 2008. Methionine sulfoxide reductases A and B are deactivated by hydrogen peroxide (H 2 O 2) in the epidermis of patients with vitiligo. J. Invest. Dermatol. 128, 808-815.   DOI
7 Slominski, A., Wortsman, J., Plonka, P. M., Schallreuter, K. U., Paus, R. and Tobin, D. J. 2005. Hair follicle pigmentation. J. Invest. Dermatol. 124, 13-21.   DOI
8 Tenyang, N., Ponka, R., Tiencheu, B., Djikeng, F. T., Azmeera, T., Karuna, M. S., Prasad, R. B. and Womeni, H. M. 2017. Effects of boiling and roasting on proximate composition, lipid oxidation, fatty acid profile and mineral content of two sesame varieties commercialized and consumed in Far-North Region of Cameroon. Food Chem. 221, 1308-1316.   DOI
9 The fate of hair follicle melanocytes during the hair growth cycle. J Investig Dermatol Symp Proc; 1999. Elsevier.
10 Tian, H. and Guo, R. 2017. Cardioprotective potential of sesamol against ischemia/reperfusion injury induced oxidative myocardial damage. Biomed. Res. 28.
11 Tsatmali, M., Ancans, J. and Thody, A. J. 2002. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. 50, 125-133.   DOI
12 Waterman, P. G. and Mole, S. 1994 Analysis of phenolic plant metabolites: Blackwell Scientific.
13 Cristofalo, V. 2005. SA ${\beta}$ Gal staining: Biomarker or delusion. Exp. Gerontol. 40, 836-838.   DOI
14 Alonso, L. and Fuchs, E. 2006. The hair cycle. J. Cell. Sci. 119, 391-393.   DOI
15 Bae, J. J., Yeon, S. J., Park, W. J., Hong, G. E. and Lee, C. H. 2016. Production of sesaminol and antioxidative activity of fermented sesame with Lactobacillus plantarum P8, Lactobacillus acidophilus ATCC 4356, Streptococcus thermophilus S10. Food Sci. Biotechnol. 25, 199-204.   DOI
16 Beavo, J. A., Rogers, N., Crofford, O., Hardman, J., Sutherland, E. and Newman, E. 1970. Effects of xanthine derivatives on lipolysis and on adenosine 3', 5'-monophosphate phosphodiesterase activity. Mol. Pharmacol. 6, 597-603.
17 Ben Othman, S., Katsuno, N., Kitayama, A., Fujimura, M., Kitaguchi, K. and Yabe, T. 2016. Water-soluble fractions from defatted sesame seeds protect human neuroblast cells against peroxyl radicals and hydrogen peroxide-induced oxidative stress. Free Radic. Res. 50, 949-958.   DOI
18 Campos, A. C., Molognoni, F., Melo, F. H., Galdieri, L. C., Carneiro, C. R., D'Almeida, V., Correa, M. and Jasiulionis, M. G. 2007. Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation. Neoplasia 9, 1111-1121.   DOI
19 Chandra, S. A., Stokes, A. H., Hailey, R., Merrill, C. L., Melich, D. H., DeSmet, K., Furst, S. M., Peterson, R. A., Mellon-Kusibab, K. and Adler, R. R. 2014. Dermal toxicity studies factors impacting study interpretation and outcome. Toxicol. Pathol. 43, 474-481.
20 Commo, S., Gaillard, O. and Bernard, B. 2004. Human hair greying is linked to a specific depletion of hair follicle melanocytes affecting both the bulb and the outer root sheath. Br. J. Dermatol. 150, 435-443.   DOI
21 D'Mello, S. A., Finlay, G. J., Baguley, B. C. and Askarian-Amiri, M. E. 2016. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17, 1144.   DOI
22 Lee, S. M., Chen, Y. S., Lin, C. C. and Chen, K. H. 2015. Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression. Int. J. Mol. Sci. 16, 1495.   DOI
23 Gan, E., Haberman, H. and Menon, I. 1974. Oxidation of NADH by melanin and melanoproteins. Biochim. Biophys. Acta 370, 62-69.   DOI
24 Ha, T. J., Lee, M. H., Seo, W. D., Baek, I. Y., Kang, J. E. and Lee, J. H. 2017. Changes occurring in nutritional components (phytochemicals and free amino acid) of raw and sprouted seeds of white and black sesame (Sesamum indicum L.) and screening of their antioxidant activities. Food Sci. Biotechnol. 26, 71-78.   DOI
25 Han, K. H., Oh, J. C. and Ryu, C. H. 2004. A study on the optimization for preparation conditions of germinated brown rice gruel. Prev. Nutr. Food. Sci. 33, 1735-1741.
26 Ide, T., Iwase, H., Amano, S., Sunahara, S., Tachihara, A., Yagi, M. and Watanabe, T. 2017. Physiological effects of ${\gamma}$ -linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation. J. Nutr. Biochem. 41, 42-55.   DOI
27 Kim, S. R., Ahn, J. Y., Lee, H. Y. and Ha, T. Y. 2004. Various properties and phenolic acid contents of rices and rice brans with different milling fractions. Kor. J. Food Sci. 36, 930-936.
28 Levy, C., Khaled, M. and Fisher, D. E. 2006. MITF: master regulator of melanocyte development and melanoma oncogene. Trends. Mol. Med. 12, 406-414.   DOI
29 Etienne, G., Cony-Makhoul, P. and Mahon, F. X. 2002. Imatinib mesylate and gray hair. N. Engl. J. Med. Overseas Ed. 347, 446-446.