• Title/Summary/Keyword: $H_2$-receptor antagonist

Search Result 158, Processing Time 0.028 seconds

Permeation of Ranitidine through the Intestinal Membrane : Site-, pH- and Concentration-dependency

  • Kim, Ok-Nam;Gordon L. Amidon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.157-160
    • /
    • 1995
  • 라니티딘은 최근 위궤양 및 십이지장 궤양의 치료에 통상적으로 많이 처방되는 히스타민 H$_2$ receptor antagonist로 작용하는 약물이다. 이 약물의 Pharma-cokinetics에 대해서는 동물 및 사람에 있어서 이미 많은 연구가 되어 있다(1-4). 수용성 약물인 라니티딘은 정상인에 있어서 경구투여 후 흡수가 신속하나 불완전한 것으로 알려져 있다(4). 경구투여 후 개개인에 따른 처고 혈중농도(Cmax)가 상당히 큰 차이를 보이며, 생체내 이용률(Bioavailability)은 평균 50% 이나 최저 27%에서 최고 88%에 이르기까지 넓은 범위를 보이고 있다. 더욱이 공복 시 경구투여 하거나(5-8), jejunum에 직접 bolus 투여후(9) 혹은 심지어는 정맥주사후의 경우(10)에도 소위 'double-peak phenomenon'이라고 불리 우는 최고 혈중농도에 있어서 bimodal pattern을 나타낸다. 이처럼 highly variable한 약물들은 생물학적 동등성(Bioequivalence) 측면에서 제제를 평가할 때 상당히 중요하고도 어려운 과제이므로, 현재 세계적인 issue가 되고 있다.

  • PDF

Ginseng Gintonin Activates the Human Cardiac Delayed Rectifier K+ Channel: Involvement of Ca2+/Calmodulin Binding Sites

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Jung, Seok-Won;Kim, Hyun-Sook;Shin, Ho-Chul;Lee, Jun-Hee;Kim, Hyoung-Chun;Rhim, Hyewhon;Hwang, Sung-Hee;Ha, Tal Soo;Kim, Hyun-Ji;Cho, Hana;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.656-663
    • /
    • 2014
  • Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits $[Ca^{2+}]_i$ transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier $K^+$ ($I_{Ks}$) channel is a cardiac $K^+$ channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating $I_{Ks}$ channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human $I_{Ks}$ channel activity by expressing human $I_{Ks}$ channels in Xenopus oocytes. We found that gintonin enhances $I_{Ks}$ channel currents in concentration- and voltage-dependent manners. The $EC_{50}$ for the $I_{Ks}$ channel was $0.05{\pm}0.01{\mu}g/ml$. Gintonin-mediated activation 1 of the $I_{Ks}$ channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an $IP_3$ receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the $I_{Ks}$ channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 $[Ca^{2+}]_i$/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on $I_{Ks}$ channel. However, gintonin had no effect on hERG $K^+$ channel activity. These results show that gintonin-mediated enhancement of $I_{Ks}$ channel currents is achieved through binding of the $[Ca^{2+}]_i$/CaM complex to the C terminus of KCNQ1 subunit.

Effect of Protein Kinase C on Norepinephrine Release in the Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 Protein Kinase C 의 영향)

  • Kim, Do-Kyung;Lee, Young-Soo;Choi, Bong-Kyu
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.145-152
    • /
    • 1995
  • The effects and interactions of $4{\beta}-phorbol$ 12,13-dibutyrate(PDB) and polymyxin B(PMB) with adenosine on the electrically-evoked norepinephrine (NE) release were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $^3H-noradrenaline$ and the release of the labelled product, $^3H-NE$, which evoked by electrical stimulation$(3\;Hz,\;2\;ms,\;5\;VCm^{-1},\;rectangular\;pulses)$ was measured. PDB$(0.3{\sim}10\;{\mu}M)$, a selective protein kinase C(PKC) activator, increased the evoked NE release in a dose related fashion while increasing the basal rate of release. And the effects of $1\;{\mu}M$ PDB were significantly inhibited by $0.3\;{\mu}M$ tetrodotoxin(TTX) pretreatment or $Ca^{++}-free$ medium. $PMB(0.03{\sim}1\;mg)$, a specific PKC inhibitor, decreased the NE release in a dose dependent manner while increasing the basal rate of release. Adenosine $(1{\sim}10\;{\mu}M)$ decreased the NE release without changing the basal rate of release, and this effect was significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine$(2\;{\mu}M)$, a selective $A_1-receptor$ antagonist, treatment. Also, adenosine effects were significantly inhibited by PDB-and PMB-pretreatment. These results suggest that the PKC plays a role in the NE release in the rat hippocampus and might be participated in a post-receptor mechanism of the $A_1-adenosine$ receptor.

  • PDF

Pharmacolgocial Characterization of LB50016, N-(4-Amino)Butyl 3-Phenylpyrrolidine Derivative, as a New 5-HT_{1A}Receptor Agonist

  • Lee, Chang-Ho;Oh, Jeong-In;Park, Hee-Dong;Kim, Hee-Jin;Park, Tae-Kyo;Kim, Jae-Soon;Hong, Chang-Yong;Lee, Seok-Jong;Ahn, Kyo-Han;Kim, Yong-Zu
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.157-164
    • /
    • 1999
  • LB50016 was characterized as a selective and potent$ 5-HT_{1A}$ receptor agonist and evaluate it anxiolytic and antidepressant activities. It shows high affinity for $ 5-HT_{1A}$receptor, moderate affinity for $\alpha$2 adrenergic and $ 5-HT_{2A}$receptors and no significant affinity for other receptors tested. Hypothermia and increased serum corticosterone level were observed in LB50016-treated rats, which are mediated mostly by post synaptic $ 5-HT_{1A}$ receptor activation. In the mouse forced swim model for depression, LB50016-elicited dose-dependent reductions in immobility time, showing $ED_{50}$ of approximately 3 mg/kg i.p., which was blocked by pretreatment of NAN-190, $ 5-HT_{1A}$antagonist. In face-to-face test for anxiolytic activity in mice, estimated $ED_{50}$ was 2 mg/kg, i.p.. In isolation-induced aggression test with mice, fifty-fold increases in latency to attack were observed at 30 min and last up to 4 h after LB50016 treatment (3 mg/kg, i.p.). Taken together, LB50016-induced pharmacological activities are mediated by activation of $ 5-HT_{1A}$receptors, offering an effective therapeutic candidate in the management of anxiety and depression in humans.

  • PDF

2-Heteroaryl Benzimidazole Derivatives as Melanin Concentrating Hormone Receptor 1 (MCH-R1) Antagonists

  • Lim, Chae Jo;Kim, Jeong Young;Lee, Byung Ho;Oh, Kwang-Seok;Yi, Kyu Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2305-2310
    • /
    • 2013
  • A novel series of 2-heteroaryl substituted benzimidazole derivatives, containing the piperidinylphenyl acetamide group at the 1-position, were synthesized and evaluated as MCH-R1 antagonists. Extensive SAR investigation probing the effects of C-2 heteroaryl group led to the identification of 2-[2-(pyridin-3-yl)ethyl] analog 3o, which exhibits highly potent MCH-R1 binding activity with an $IC_{50}$ value of 1 nM. This substance 3o also has low hERG binding activity, good metabolic stability, and favorable pharmacokinetic properties.

Gintonin regulates inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2

  • Kim, Mijin;Sur, Bongjun;Villa, Thea;Yun, Jaesuk;Nah, Seung Yeol;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.575-582
    • /
    • 2021
  • Background: In ginseng, there exists a glycolipoprotein complex with a special form of lipid LPAs called Gintonin. The purpose of this study is to show that Gintonin has a therapeutic effect on rheumatoid arthritis through LPA2 receptors. Methods: Fibroblast-like synoviocytes (FLS) were treated with Gintonin and stimulated with interleukin (IL)-1β. The antioxidant effect of Gintonin was measured using MitoSOX and H2DCFDA experiments. The anti-arthritic efficacy of Gintonin was examined by analyzing the expression levels of inflammatory mediators, phosphorylation of mitogen-activated protein kinase (MAPK) pathways, and translocation of nuclear factor kappa B (NF-κB)/p65 into the nucleus through western blot. Next, after treatment with LPAR2 antagonist, western blot analysis was performed to measure inflammatory mediator expression levels, and NF-κB signaling pathway. Carrageenan/kaolin-induced arthritis rat model was used. Rats were orally administered with Gintonin (25, 50, and 100 mg/kg) every day for 6 days. The knee joint thickness, squeaking score, and weight distribution ratio (WDR) were measured as the behavioral parameters. After sacrifice, H&E staining was performed for histological analysis. Results: Gintonin significantly inhibited the expression of iNOS, TNF-α, IL-6 and COX-2. Gintonin prevented NF-κB/p65 from moving into the nucleus through the JNK and ERK MAPK phosphorylation in FLS cells. However, pretreatment with an LPA2 antagonist significantly reversed these effects of Gintonin. In the arthritis rat model, Gintonin suppressed all parameters that were measured. Conclusion: This study suggests that LPA2 receptor plays a key role in mediating the anti-arthritic effects of Gintonin by modulating inflammatory mediators, the MAPK and NF-κB signaling pathways.

Suppressive Effect of CYM50358 S1P4 Antagonist on Mast Cell Degranulation and Allergic Asthma in Mice

  • Jeon, Wi-Jin;Chung, Ki Wung;Lee, Joon-Hee;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.492-497
    • /
    • 2021
  • Levels of sphingosine 1-phosphate (S1P), an intercellular signaling molecule, reportedly increase in the bronchoalveolar lavage fluids of patients with asthma. Although the type 4 S1P receptor, S1P4 has been detected in mast cells, its functions have been poorly investigated in an allergic asthma model in vivo. S1P4 functions were evaluated following treatment of CYM50358, a selective antagonist of S1P4, in an ovalbumin-induced allergic asthma model, and antigen-induced degranulation of mast cells. CYM50358 inhibited antigen-induced degranulation in RBL-2H3 mast cells. Eosinophil accumulation and an increase of Th2 cytokine levels were measured in the bronchoalveolar lavage fluid and via the inflammation of the lungs in ovalbumin-induced allergic asthma mice. CYM50358 administration before ovalbumin sensitization and before the antigen challenge strongly inhibited the increase of eosinophils and lymphocytes in the bronchoalveolar lavage fluid. CYM50358 administration inhibited the increase of IL-4 cytokines and serum IgE levels. Histological studies revealed that CYM50358 reduced inflammatory scores and PAS (periodic acid-Schiff)-stained cells in the lungs. The pro-allergic functions of S1P4 were elucidated using in vitro mast cells and in vivo ovalbumin-induced allergic asthma model experiments. These results suggest that S1P4 antagonist CYM50358 may have therapeutic potential in the treatment of allergic asthma.

A Study on the Post-Receptor Mechanism of Adenosine Receptor on Norepinephrine Release in the Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구)

  • Choi, Bong-Kyu;Kim, Do-Kyung;Yang, Kyung-Moo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Since it has been reported that the depolarization-induced norepinephrine (NE) release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the NE release has not been clearly elucidated yet. Therefore, it was attempted to clarify the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of NE release in this study. Slices from rat hippocampus were equilibrated with $^3H-norepinephrine$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $Vcm^{-1}$, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $1{\sim}30{\mu}M$, decreased the NE release in a dose-dependent manner, without affecting the basal rate of release. The adenosine effects were significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, $2{\mu}M$), a selective $A_1-receptor$ antagonist. The responses to N-ethylmaleimide (NEM, 10 & $30{\mu}M$), a SH-alkylating agent of G-protein, were characterized by increments of the evoked NE-release and the basal release, and the adenosine effects were completely abolished by NEM pretreatment. $4{\beta}-Phorbol$ 12,13-dibutyrate (PDB, $1{\mu}M$), a specific protein kinase C (PKC) activator, increased the evoked NE release, whereas polymyxin B sulfate (PMB,0.1 mg), a PKC inhibitor, decreased the release, and the adenosine effects were inhibited by these agents. Nifedipine $(1{\mu}M)$, a $Ca^{2+}-channel$ blocker of dihydropyridine analogue, did not affect the adenosine effect. Tetraethylammonium (TEA, 3 mM) increased the evoked NE release, and inhibited the adenosine effects, but glibenclamide, a ATP dependent $K^+-channel$ blocker, did not. Finally, 8-bromo cyclic AMP (100 & $300{\mu}M$), a membrane-permeable analogue of cAMP, did not alter the NE release, but adenosine effects were inhibited by pretreatment with 8br-cAMP. These results suggest that the decrement of the evoked NE-release by $A_1-adenosine$ receptor is mediated by the C-protein, which is coupled to protein kinase C, adenylate cyclase system and TEA sensitive $K^+-channel$, and that nifedipine-sensitive $Ca^{2+}-channel$ and glibenclamide-sensitive $K^+-channel$ are not involved in this process.

  • PDF

The Involvement of AMPA Receptor in the Antidepressant-like Effects of the Portulaca Oleracea L. Extract in Mice

  • Park, Soo-Jin;Choi, Min-Ji;Chung, Sun-Yong;Kim, Jong-Woo;Cho, Seung-Hun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.271-280
    • /
    • 2013
  • Objectives : The development of natural drugs with antidepressant effects is important and needed. This study was performed to investigate the antidepressant-like effects of the distilled water extract of Portulaca oleracea L. (POL) in a mouse model and to investigate the role of ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in producing these antidepressant-like effects. Methods : The forced swim test (FST) and tail suspension test (TST) were used to investigate the behavioral anti-depressive-like effects of POL in mice. Additional behavioral experiments with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione, an AMPA receptor antagonist, were undertaken to determine the involvement of the antidepressant-like properties of POL in AMPA receptor throughput. Results : Oral administration of the POL extract (100 mg/kg) 1 h prior to testing significantly reduced the immobility times in the FST and TST. The antidepressant-like effects of the POL extract were not increased in a dose-dependent manner. Pre-treatment with NBQX significantly attenuated the reduction in immobility time induced by the POL extract in the FST. Conclusions : The distilled water extract of POL has antidepressant-like effects, which may be related to AMPA receptor. Pre-treatment with NBQX significantly attenuates the reduction in immobility time induced by the POL extract in the FST.

The Effect of Acetylcholine on the Intracellular $Ca^{2+}$ Increase of the Mouse Early 2-cell Embryos (생쥐 초기 2-세포 배의 세포내 칼슘 증가에 미치는 Acetylcholine의 영향)

  • Yoon S. Y.;Kang D. W.;Bae I. H.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.191-200
    • /
    • 2005
  • Many studies have shown that the development of mouse early 2-cell embryos in vitro is related with the intracellular $Ca^{2+}$ changes. In ICR strain mouse, the development of embryos arrests at early 2-cell stage, but the arrested early 2-cell embryos can be rescued by the addition of $Ca^{2+}$-related materials. Acetylcholine (ACh) increases intracellular $Ca^{2+}$ concentration ([$Ca^{2+}$]i) via the mAChR-PLC-IP3 pathway in mouse oocytes. We examined whether ACh rescues 2-cell block in mouse. In early 2-cell embryos, ACh increased [$Ca^{2+}$]i in a dose-dependent manner (p<0.001), and had an effect on rescue of 2-cell block and embryonic development. To identify the signal pathway involved in ACh-induced rescue of 2-cell block, we first applied an agonist of ACh receptor (AChR). Like ACh, carbachol increased intracellular $Ca^{2+}$ concentration ([$Ca^{2+}$]i) and atropine, an antagonist of ACh receptor, blocked the ACh-induced $Ca^{2+}$ increase. In $Ca^{2+}$-free medium, ACh also increased [$Ca^{2+}$]i, indicating that $Ca^{2+}$ increased by ACh is mainly released from the intracellular $Ca^{2+}$ store. The ACh-induced $Ca^{2+}$ increase was blocked by PLC inhibitor (U73122), ryanodine receptor (RyR) antagonist (dantrolene), and CaM KII inhibitor (KN-93), but not by IP3R antagonists (xestospongin C). These results show that ACh increases intracellular $Ca^{2+}$ concentration via mAChR/PLC/RyR, and this contributes to the rescue of 2-cell block.