• Title/Summary/Keyword: $H_2$ storage metal

Search Result 90, Processing Time 0.03 seconds

Changes in Metals (Pb, Sn and Fe), Vitamin C Contents, Color and pH of Canned Pineapple Juice and Slice during Open Storage (캔 파인애플 쥬스 및 슬라이스의 개봉 후 저장조건에 따른 금속(Pb, Sn and Fe), Vitamin C. 색도 및 pH 변화)

  • 이숙경;손종성
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.1
    • /
    • pp.115-121
    • /
    • 1999
  • The effect of storage temperature and time on the contents of metal (Pb, Sn and Fe), vitamin C, color and pH was studied for canned pineapple juice (PJ) and pineapple slice (PS) which were stored for 120 hours at 5 and 2$0^{\circ}C$ and analyzed at 24 hours intervals. The results are as follows; 1. The metal contents of PJ and PS were in the rank of 24<48<72<96<120 hours by storage time at 5 and 2$0^{\circ}C$. These contents were increased to 44.1%/24 hrs of Ph, 18.0%/24 hrs of Sn, 34.6%/24 hrs of Fe but decreased to 6.0%/24 hrs of vitamin C in PJ and PS during 120 hrs. Storage times were correlation to contents of metal and pH but was not correlation to vitamin C contents. These were increased to 37.7%/24 hrs of Pb, 18.8%/24 hrs of Sn, 34.6%/24 hrs of Fe, but decreased to 6.0%/24 hrs of vitamin C. 2. These were increased to 10.6% of Pb, 3.7% of Sn, 11.3% of Fe in PJ and to 33.7% of Pb, 4.8% of Sn, 37.6% of Fe in PS at 2$0^{\circ}C$ than 5$^{\circ}C$ but vitamin C contents were decreased to 8.2% in PJ and 2.7% in PS at 2$0^{\circ}C$ than 5$^{\circ}C$. This fact suggests that more attention be paid in handling canned PJ and PS after opening in order to avoid the decreasing vitamin C and the hazard from Pb, Sn, Fe. 3. Changing factors in Pb, Sn, Fe and vatiamin C content were in the rank of storage temperature$0^{\circ}C$.

  • PDF

Stability of Monascin Pigment Isolated from Monascus purpureus (홍국의 황색색소 Monascin에 대한 안정성 연구)

  • 박영현;채지민
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.1
    • /
    • pp.15-19
    • /
    • 1997
  • The stability of monascin yellow pigment isolated from Monascus purpureus was determined over a period of storage for the wide range of pH, various metal ions and antioxidants. The absorption maximum of monascin pigment was 385 nm. Monascin pigment was more stable in acid solutions than in alkaline (pH 9 and pH 11) during storage period. It was also observed the reduction of absorption was occur after 3 days storage. The stability of monascin pigment was not changed by adding the various metal ions of the concentration of 10-4 M, however, it was unstable by adding the Zn2+, Al3+ and Fe3+ of 103- M concentration. The antioxidants. BHA, BHT, cysteine and L-ascorbic acid, have no effects on the stability of monascin yellow pigment. Thus, it may be concluded that the monascin pigment is stable and useful food additives as the natural colorant except for the alkaline food and food containing the Zn2+, Al3+ and Fe3+.

  • PDF

Evaluations of Hydrogen Properties of MgHx-Nb2O5 Oxide Composite by Hydrogen Induced Mechanical Alloying (수소 가압형 기계적 합금화법으로 제조한 MgHx-Nb2O5 산화물 복합 재료의 수소화 특성 평가)

  • Lee, Nari;Lee, Soosun;Hong, Taewhan
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.429-436
    • /
    • 2012
  • Mg and Mg-based alloys are regarded as strong candidate hydrogen storage materials since their hydrogen capacity exceeds that of known metal hydrides. One of the approaches to improve kinetic is addition of metal oxide. In this paper, we tried to improve the hydrogenation properties of Mg-based hydrogen storage composites. The effect of transition metal oxides, such as $Nb_2O_5$ on the kinetics of the Magnesium hydrogen absorption kinetics was investigated. $MgH_x$-5wt.% $Nb_2O_5$ composites have been synthesized by hydrogen induced mechanical alloying. The powder fabricated was characterized by X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (Fe-SEM), Energy Dispersive X-ray (EDX), BET and simultaneous Thermo Gravimetric Analysis / Differential Scanning Calorimetry (TG/DSC) analysis. The Absorption / desorption kinetics of $MgH_x$-5wt.% $Nb_2O_5$ (type I and II) are determined at 423, 473, 523, 573 and 623 K.

High Hydrogen Capacity and Reversibility of K-Decorated Silicon Materials

  • Park, Min-Hee;Ryu, Seol;Han, Young-Kyu;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1719-1721
    • /
    • 2012
  • We have investigated the $H_2$ adsorption structures and binding energies of the metal (M)-doped (M = Li, Na, K, Mg, and Al) silicon complexes, $M-Si_{19}H_{11}$ and $M-Si_{24}H_{12}$, using density functional calculations. Alkali metals are preferred as doping elements because the Mg-Si and Al-$H_2$ interactions are weak. The maximum numbers of $H_2$ molecules that can be adsorbed are four and five for M=Li and K, respectively. We propose that the K-decorated silicon material might be an effective hydrogen storage material with high hydrogen capacity and high reversibility.

Hydrogen Storage Capacities of MOF-5 and Microporous Carbon: Effects of Pt Loading and Hybridization (MOF-5 및 마이크로다공성 카본의 수소 저장 성능: Pt 첨가 및 하이브리드화의 영향)

  • Yunatri, Rika Tri;Suh, Dong-Jin;Suh, Young-Woong
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.377-385
    • /
    • 2008
  • In this study, we demonstrated that, although hydrogen molecules can be adsorbed onto the adsorbent such as MOF and MC itself, the loading of noble metal such as Pt is necessary to enhance the $H_2$ storage capacity since $H_2$ molecules can be dissociatively adsorbed on Pt metal and migrated to high-surface-area adsorbent via the primary spillover. In addition, the hybrid material have been prepared coupling MOF-5 with Pt/MC through carbon bridges formed by sucrose polymerization/carbonization. That this material showed the highest $H_2$ uptake at room temperature and about 100 bar is believed to be associated with the secondary spillover effect. Thus, such a strategy is very promising in developing $H_2$ storage technology using porous adsorbents. However, further experiments should be carried out to explore the choice of bridge carbon, the hybridization method, the dispersion technique of noble metals, etc.

Evaluation of Shelf-life of Bojungikgi-tang by Long-term Storage Test (장기보존시험에 따른 보중익기탕 전탕팩의 유통기한 평가)

  • Seo, Chang-Seob;Kim, Jung-Hoon;Kim, Seong-Sil;Lim, Soon-Hee;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.200-208
    • /
    • 2013
  • The aim of this study was to evaluate the shelf-life of Bojungikgi-tang (Buzhongyiqi-tang in Chinese) by long-term storage test. Experiments were performed to evaluate the stability such as the selected physicochemical, pH, identification, heavy metal, microbiological experiment, and amount of marker compounds under a long-term storage test of Bojungikgi-tang decoction. The significant change was not showed in pH, heavy metal, microbiological, and identification test based on long-term storage test. Furthermore, the HPLC analysis was performed for the determinations of liquiritin, glycyrrhizin, nodakenin, and hesperidin in Bojungikgi-tang by long-term storage test. We were calculated shelf-life of Bojungikgi-tang decoction based on the amount change of four constituents. Consequently, Shelf-life by four compounds at room temperature was predicted 23 month. The suggested shelf-life would be helpful on the storage and distribution of herbal medicine.

Mechanistic insights of metal acetylacetonate-aided dehydrocoupling of liquid-state ammonia borane NH3BH3

  • Pereza, Manon;Mieleb, Philippe;Demirci, Umit B.
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.177-187
    • /
    • 2016
  • Ammonia borane $NH_3BH_3$ solubilized in organic solvent is a potential liquid-state chemical hydrogen storage material. In this study, metal acetylacetonates like $Fe(O_2C_5H_7)_3$, $Co(O_2C_5H_7)_2$, $Ni(O_2C_5H_7)_2$, $Pd(O_2C_5H_7)_2$, $Pt(O_2C_5H_7)_2$ and $Ru(O_2C_5H_7)_3$ are considered for assisting dehydrocoupling of ammonia borane in diglyme (0.135 M) at $50^{\circ}C$. The molar ratio between ammonia borane and metal acetylacetonate is fixed at 100. A protocol for the separation of the soluble and insoluble fractions present in the slurry is proposed; it consists in using acetonitrile to make the precipitation of metal-based compounds easier and to solubilize boron-based intermediates/products. The nature of the metal does not affect the dehydrocoupling mechanisms, the $^{11}B\{^1H\}$ NMR spectra showing the formation of the same reaction intermediates. The aforementioned metal acetylacetonates do mainly have effect on the kinetics of dehydrocoupling. Dehydrocoupling takes place heterogeneously and dehydrogenation of ammonia borane in these conditions leads to the formation of polyborazylene via intermediates like e.g., B-(cyclodiborazanyl) amine-borane and borazine. Our main results are reported and discussed herein.

Technologies for Next-Generation Metal-Ion Batteries Based on Aqueous Electrolytes (수계전해질기반 차세대 금속이온전지 기술)

  • D.O. Shin;J. Choi;S.H. Kang;Y.S. Park;Y.-G. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.1
    • /
    • pp.83-94
    • /
    • 2024
  • There have been continuous requirements for developing more reliable energy storage systems that could address unsolved problems in conventional lithium-ion batteries (LIBs) and thus be a proper option for large-scale applications like energy storage system (ESS). As a promising solution, aqueous metal-ion batteries (AMIBs) where water is used as a primary electrolyte solvent, have been emerging owing to excellent safety, cost-effectiveness, and eco-friendly feature. Particularly, AMIBs adopting mutivalence metal ions (Ca2+, Mg2+, Zn2+, and Al3+) as mobile charge carriers has been paid much attention because of their abundance on globe and high volumetric capacity. In this research trend review, one of the most popular AMIBs, zinc-ion batteries (ZIBs), will be discussed. Since it is well-known that ZIBs suffer from various (electro) chemical/physical side reactions, we introduce the challenges and recent advances in the study of ZIBs mainly focusing on widening the electrochemical window of aqueous electrolytes as well as improving electrochemical properties of cathode, and anode materials.

Hydrated Vanadium Pentoxide/Graphene Oxide Nanobelts for Enhanced Electrochemical Performance

  • Hyegyeong Hwang;Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.387-394
    • /
    • 2024
  • Transition metal oxide-based materials have mainly been studied as electrodes for energy storage devices designed to meet essential energy demands. Among transition metal oxide-based materials, hydrated vanadium pentoxide (V2O5·nH2O), a vanadium oxide material, has demonstrated great electrochemical performance in the electrodes of energy storage devices. Graphene oxide (GO), a carbon-based material with high surface area and high electrical conductivity, has been added to V2O5·nH2O to compensate for its low electrical conductivity and structural instability. Here, V2O5·nH2O/GO nanobelts are manufactured with water without adding acid to ensure that the GO is uniformly dispersed, using a microwave-assisted hydrothermal synthesis. The resulting V2O5·nH2O/GO nanobelts exhibited a high specific capacitance of 206 F/g and more stable cycling performance than V2O5·nH2O without GO. The drying conditions of the carbon paper electrodes also resulted in more stable cycling performance when conducted at high vacuum and high temperature, compared with low vacuum and room temperature conditions. The improvement in electrochemical performance due to the addition of GO and the drying conditions of carbon paper electrodes indicate their great potential value as electrodes in energy storage devices.

Trend in Research and Development of Lithium Complex Hydrides for Hydrogen Storage (리튬계 수소저장재료의 연구개발 동향)

  • Shim, Jae-Dong;Shim, Jae-Hyeok;Ha, Heon-Phil
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.159-167
    • /
    • 2012
  • Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero $CO_2$ emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% $H_2$, moderate hydrogen release temperature below $100^{\circ}C$, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.