• Title/Summary/Keyword: $H_2$ permeation

Search Result 345, Processing Time 0.023 seconds

A Study on the Nitrogen Permeation Treatment of 17-4 PH Stainless Steel (17-4 PH Stainless 강의 질소침투 열처리)

  • Yoo, D.K.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.2
    • /
    • pp.83-89
    • /
    • 2006
  • The surface phase changes, the hardness variations, the nitrogen contents and the corrosion resistances of 17-4 PH stainless steel have been investigated after nitrogen permeation(solution nitriding) at a temperature ranges from $1050^{\circ}C$ to $1150^{\circ}C$ The phases appeared at the nitrogen-permeated surface layer were shown to martensite plus austenite and austenite, depending on the variation of nitrogen and chromium contents. And the surface hardness was also depended on the phases appeared at the surface layer from 370 Hv to 220 Hv. The precipitates exhibited at the nitrogen-permeated surface layer were niobium nitride, niobium chromium nitride and carbo-nitride in the austenite and martensite matrices. The surface nitrogen contents were followed by the Cr contents of the surface layers, representing 0.55% at the temperatures of $1050^{\circ}C$ and $1150^{\circ}C$ respectively, and 0.96% at $1100^{\circ}C$ at the distances of $60{\mu}m$ from the outmost surface. From the comparison of the corrosion resistances between nitrogen-permeated and solution-annealed steels, nitrogen permeation remarkably improved the corrosion resistance in the solution of 1 N $H_2SO_4$ due to the increase of nitrogen content in the surface austenite phase.

Electrotransport of Levodopa through Skin: Permeation at Low pH (전류를 이용한 Levodopa의 경피전달: 낮은 pH에서의 투과)

  • Jo, Jung-Eun;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • In our previous work on levodopa delivery at pH 2.5 using iontophoresis, we found that cathodal delivery showed higher permeation than anodal delivery and electroosmosis plays more dominant role than electrorepulsion. In this work, we studied the transdermal transport of levodopa at very low pH (pH=1.0) where all levodopa molecules are cations, and evaluated some factors which affect the transdermal transport. The transport study at pH 2.5 was also conducted for comparison. The contribution of electrorepulsion and electroosmosis on flux was also evaluated. Using stable aqueous solution, the effect of electrode polarity, current density, current type and drug concentration on transport through skin were studied and the results were compared. We also investigated the iontophoretic flux from hydroxypropyl cellulose (HPC) hydrogel containing levodopa. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell. Full thickness hairless mouse skin were used. Current densities applied were 0.2, 0.4 or $0.6\;mA/cm^2$. Contrary to the pH 2.5 result, anodal delivery showed higher flux, indicating that electrorepulsion is the dominant force for the transport, overcoming the electroosmotic flow which is acting against the direction of electrorepulsion. Cumulative amount of levodopa transported was increased as the current density or drug concentration was increased. When amount of current dose was constant, continuous current was more beneficial than pulsed current in promoting levodopa permeation. Similar transport results were obtained when hydrogel was used as the donor phase. These results indicate that iontophoretic delivery of zwitterion such as levodopa is much complicated than that can be expected from small ionic molecules. The results also indicate that, only at very low pH like pH 1.0, electrorepulsion can be the dominant force over the electroosmosis in the levodopa transport.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

A Study on the Gas Permeation Characteristics of Plasma Polymers (플라즈마 고분자에 대한 기체의 투과특성에 관한 연구)

  • Oh, Sae-Joong
    • Membrane Journal
    • /
    • v.4 no.4
    • /
    • pp.205-212
    • /
    • 1994
  • Gas permeation properties of simple gases(He, $H_2,\;CO_2,\;O_2,\;N_2,\;CH_4$) through plasma-polymerized films were investigated, and the chemical structure of the plasma polymers was analyzed by infrared spectra. The plasma-polymerized films were prepared by plasma polymerization of fluorine-containing aromatic compounds, and permeation measurements were made at $35^{\circ}C$, latm. The permeability coefficient of the plasma films decreased as the size of penetrant molecules increased. The plasma polymers showed higher $CO_2/CH_4$ selectivities than those of commonly used polymers, while $O_2/N_2$ selectivities were similar of slightly lower than those of common polymers. FT-IR spectra shows that the plasma polymers contain both aromatic and aliphatic structures.

  • PDF

Modelling and Simulation of H2 separation in Pd Membrane System with Co-current and Current-current Flow (병류와 향류 흐름에서 수소분리를 위한 Pd 분리막 시스템의 모델링 및 모사)

  • Yi, Yong;Noh, Seunghyo;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.598-602
    • /
    • 2010
  • In this paper, we carried out CFD modelling and simulation for the membrane system to separate H2 gas from the multi-component feed gas. The membrane system is of the annulus tubular type consisting of the external lumen side for the feed gas and the internal permeation side for the sweeping gas. The operating temperature and pressure of the lumen side inlet flow are $374^{\circ}C$ and 7 bar respectively and those of the sweeping gas are $374^{\circ}C$ and 3 bar, and considering these conditions, Pd membrane system was employed. CFD simulations were performed for the co-current flow and counter-current flow membrane system based on the flow directions between the feed and the sweeping gas. Comparisons and discussions were made for the H2 partial pressure, H2 mole fraction and H2 flux for both cases. Furthermore, we executed CFD simulations for the each case of the various inlet flow rates of the feed gas at the lumen side. Accordingly, we reviewed the effects of the flow rate and residence time on the performance of the membrane system.

Dissolution and Duodenal Permeation Characteristics of Lovastatin from Bile Salt Solid Dispersions (담즙산염과의 고체분산체로부터 로바스타틴의 용출 및 십이지장 점막 투과 특성)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Although lovastatin (LS) is widely used in the treatment of hypercholesterolemia, its bioavailability is known to be around 5%. This study was aimed to increase the solubility and dissolution-permeation rates of LS using solid dispersions (SDs) with bile salts. The solubilities of LS in water, aqueous bile salt solutions and non-aqueous vehicles were determined, and effects of bile salts on the cellulose or duodenal permeation of LS from SDs were evaluated using a horizontal permeation system. SDs were prepared at various ratios of LS to carriers, such as sodium deoxycholate (SDC), sodium glycocholate (SGC) and/or 2-hydroxypropyl-$\beta$-cyclodextrin (HPCD). The addition of bile salts (25 mM) in water increased markedly the solubility of LS by the micellar solubilization. Some non-aqueous vehicles were effective in solubilizing LS. From differential scanning calorimetric studies, it was found that the crystallinity of LS in SDs disappeared, indicating a formation of amorphous state. The SDs showed markedly enhanced dissolution compared with those of their physical mixtures (PMs) and drug alone. In the dissolution-permeation studies using a cellulose membrane, the donor and receptor solutions were maintained as a sink condition using pH 7.0 phosphate buffer containing 0.05% sodium lauryl sulfate (SLS). The flux of LS alone was nearly same as that of LS-SDC-HPCD (1:3:6) PM. However, the flux of LS-SDC-HPCD (1:3:6) SD slightly increased compared with drug alone and PM, suggesting that entrapment of LS in micelles does not significantly hinder the permeation across cellulose membrane. In the dissolution-duodenal permeation studies using a LS-HPCD-SDC (1:3:6) SD, the addition of various bile salts in donor solutions (25 mM) enhanced the permeation of LS markedly, and the fluxes were found to be $0.69{\pm}0.41$, $0.87{\pm}0.51$, $0.84{\pm}0.46$, $0.47{\pm}0.17$ and $0.68{\pm}0.32{\mu}g/cm^2/hr$ for sodium cholate (SC), SDC, SGC, sodium taurodeoxycholate (STDC) and sodium taurocholate (STC), respectively. The stepwise increase of donor SGC concentration increased the flux dose-dependently. From the relationship of donor SGC concentration and flux, the concentration of SGC initiating the permeation across the duodenal mucosa was calculated to be 11.1 mM, which is nearly same as the critical micelle concentration (CMC, 11.6 mM) of SGC. However, with no addition of bile salts and below CMC, the permeation was very limited and irratic, indicating that LS itself is very poor permeable. Higher protions of bile salt in SD such as LS-SDC or LS-SGC (1 : 49 and 1 : 69) showed highly promoted fluxes. In conclusion, SD systems with bile salts, which may form their micelles in intestinal fluids, might be a promising means for providing enhanced dissolution and intestinal permeation of practically insoluble and non-absorbable LS.

A Study on Nitrogen Permeation Heat Treatment of Super Martensitic Stainless Steel (수퍼 마르텐사이트계 스테인리스강의 질소침투 열처리)

  • Yoo, D.K.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2006
  • The phase changes, nitride precipitation and hardness variations of 14%Cr-6.7Ni-0.65Mo-0.26Nb-0.05V-0.03C super martensitic stainless steel were investigated after nitrogen permeation heat treatment at a temperature range between $1050^{\circ}C$ and $1150^{\circ}C$. The nitrogen-permeated surface layer was transformed into austenite. The rectangular type NbN, NbCrN precipitates and fine round type precipitate were coexisted in the surface austenite layer, while the interior region that was free from nitrogen permeation kept the martensitic phase. The hardness of surface austenite showed 280 Hv, while the interior region of martensite phase represented 340 Hv. When tempering the nitrogen-permeated steel at $450^{\circ}C$, a maximum hardness of 433 Hv was appeared, probably this is attributed to the secondary hardening effect of the precipitates. The nitrogen concentration decreased gradually with increasing depth below the surface after showing a maximum of 0.3% at the outmost surface. The strong affinity between nitrogen and Cr enabled the substitutional element Cr to move from interiors to the surface when nitrogen diffuse form surface to the interior. Corrosion resistance of nitrogen permeated steel was superior to that of solution-anneaed steel in the solution of 1N $H_2SO_4$.

Application of Glucuronic Acid with New Cosmetic Active Ingredient (새로운 노화 방지 성분으로서 글루쿠로닉 애씨드의 기능과 화장품 응용)

  • Lee Geun-Soo;Kim Jin-Wha;Lee Chun-Il;Pyo Hyeong-Bae;Lee Kong-Joo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.471-477
    • /
    • 2004
  • Exposure to elevated temperatures, chemical (active oxigen), or physical stress (UV light) induces immediate physiological response, the expression of heat shock proteins in cells. Thus, cells with elevated Heat Shock Protein levels become more tolerant to stress conditions that are otherwise lethal. First, we studied on the new function of glucuronic acid (GA) as preventive material of skin aging. The application of the GA shows significant induction of Heat Shock Protein 70 kDa (HSP 70 kDa) in contrast to cells without it. GA at the concentration which can induce HSP 70 kDa, protects the cell death induced by second stress (heat shock and hydrogen peroxide) in NIH3T3 cells. Second, we studied on in vitro transdermal permeation characteristic of GA through the excised mouse skin. In this study, we compared the skin permeability of GA in water with O/W emulsion. As a result, skin permeation parameters of GA shows lag time 1.2 h, partition coefficient 0.114, permeation flult rate $0.83114 mg/cm^2/h.$ In case of lag time, O/W emulsion containing GA increase 2.48 h. Also, the total accumulation permeation content decreased in contrast to GA solution after 24 h. But it has long-term permeability of glucuronic acid. These results suggest that glucuronic acid could be a good cosmetic active ingredient.

Skin Absorption of Lawsone in Henna Hair Dye and the Effect of Skin Protectants (헤나염모제 사용 시 로우손의 피부흡수 특성 및 피부보호제의 효과)

  • Kim, Ju Yeon;Kim, Bae-Hwan;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.2
    • /
    • pp.173-183
    • /
    • 2021
  • Objectives: This study evaluated the skin permeability of lawsone in henna hair dyes to understand the exposure characteristics of henna hair dyes in the human body. It examined the protective effects of protectants by applying protectants A, B, and C to test skin. Methods: Skin absorption tests were conducted using Franz diffusion cells according to OECD test guideline 428. After applying one kind of natural henna hair dye and chemical henna hair dye, respectively, to a standardized pig skin model, samples of receptor fluid were collected at 1h, 3h, 6h, and 24h. The skin permeation of lawsone was determined using HPLC. After the skin absorption experiment, the skin to which hair dye was applied was analyzed to determine the residual amount of lawsone in the skin. Results: The cumulative permeation of both natural and chemical henna hair dyes increased over time, and the natural henna hair dye had a flux value (t=3.194, p<.05) high both in the Kp value (t=3.207, p<.05) and the residual amount (t=22.701, p<.001). For skin treated with a protectant, the cumulative permeation of natural henna hair dye 24h control and the cumulative permeation of protectant A, B, and C increased over time. Flux and Kp values were in the order control > protectant A > protectant C > protectant B. The residual amount (F=4.469, p<.05) was in the order of protectant C > protectant A > protectant B > control. At 3h, the dye application time of natural henna hair dye, the lawsone flux value (F=4.454, p<.05) and Kp value (F=4.455, p<.05) were higher in the control group than in the protectant groups. The 24h cumulative permeation of the chemical henna hair dye increased with time in both the control and the protectant groups, and the flux and Kp values were in the order of protectant A > protectant C > protectant B > control. The residual amount (F=7.901, p<.01) was in the order of protectant B > protectant A> protectant C > control. Conclusions: Within the normal dyeing time for henna hair dye (three hours for natural henna hair dyes and 30 minutes for chemical henna hair dyes) lawsone skin penetration was not observed even when no protective agent was applied. After that time, however, evidence of skin penetration and retention of lawsone and the protective effect of protective agents were observed.

Production of Glucoamylase from Hybrid Constructed by Intergenic Nuclear Transfer between Saccharomycopsis sp. and Saccharomyces sp. (핵전이법에 의해 형성된 Saccharomycopsis 속과 Saccharomyces 속의 잡종에서 glucoamylase 생산에 관한 연구)

  • 양영기;임채영;김종권;문명님;이영하
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.182-188
    • /
    • 2001
  • The glucoamylase was purified from the induced culture filtrate of hybrid between Saccharomycopsis sp. and Saccharomycopsis sp. made by nuclear transfer and characterized for some enzyme properties. The enzymewas purified 76-fold in an overall yield of 16% from the culture medium by ammonium sulfate fractionation,Sephadex G-150 gel permeation chromatography and DEAE-Sephadex A-50 ion exchage chromatography.The molecular weight of the purified glucoamylase was estimated to be 57.5 KDa on SDS-polyacrylamidegel electrophoresis and Sephadex G-150 gel permeation chromatography. The purified enzyme was active atpH-5.0 and $40^{\circ}C$. The Km value for soluble starch was 2.6 mg/ml. The enzymatic activity was stimulated inthe presence of TEX>$Ca^{2+}$, EDTA, $Co^{2+}$, $Mg^{2+}$, and $Mn^{2+}$

  • PDF