• 제목/요약/키워드: $H_2$ oxidation

검색결과 2,329건 처리시간 0.027초

갈바닉 산화와 황철석 용해를 이용한 친환경 원위치 광미 무해화 기술 (Application of Galvanic Oxidation and Pyrite Dissolution for Sustainable In-Situ Mine Tailings Treatment)

  • 주원정;조은혜;남경필
    • Ecology and Resilient Infrastructure
    • /
    • 제3권4호
    • /
    • pp.279-284
    • /
    • 2016
  • 선광 및 제련과 같은 광산활동 과정에 발생하는 광미는 고농도의 중금속을 함유하고 있고, 그 중 황철석을 함유한 광미는 광산주변 수계 및 토양 오염의 주요 원인이다. 이러한 황철석을 함유한 광미의 무해화를 위해 화학전지 (연료전지)의 개념을 활용할 수 있다. 화학전지에서 황철석의 자발적인 산화, 즉, 갈바닉 산화를 통해 황철석이 용해되면서 $Fe^{3+}$와 황산이 생성되어 pH가 감소하게 된다. 이는 황철석 함유 광미 내 중금속의 용출 촉진 효과를 가져올 수 있다. 본 연구에서는 $23^{\circ}C$ 조건에서 4주 간 산성용액과 갈바닉 반응기를 이용해 황철석을 처리하며 총 용존 철 농도와 용액의 pH를 확인하였다. 또한 주사전자현미경을 이용해 처리 후 황철석 표면을 관찰하였다. 갈바닉 반응기를 이용한 황철석의 용해가 산성용액을 이용한 황철석의 용해에 비해 약 2.9배 높은 총 철을 용출시킨 것을 확인하였고, pH 저감 효과도 더 큰 것을 확인하였다. 또한 표면 분석 결과 갈바닉 반응기 내에서 반응한 황철석의 표면에서 더 많은 홈을 발견되었다. 본 연구를 통해 갈바닉 산화에 의해 황철석의 용해가 촉진된 것을 확인하였으며, 갈바닉 산화가 황철석 함유 광미의 무해화 기술로 사용될 수 있는 가능성을 확인하였다.

The Oxidation of Functionally Gradient NiCrAlY/YSZ Coatings

  • Park, K.B.;Park, H.S.;Kim, H.J.;Lee, D.B.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.499-502
    • /
    • 2001
  • Functionally gradient NiCrAlY/$ZrO_2$-$Y_2$$O_3$ and NiCrAlY/$ZrO_2$- $CeO_2$-$Y_2$$O_3$ coatings were prepared by APS. The as-sprayed microstructure consisted of metal-rich and ceramic-rich regions, between which $Al_2$$O_3$-rich layers existed owing to the oxidation during APS. During oxidation between 900 and $1100^{\circ}C$ in air, the pre-existing $Al_2$$O_3$-rich scales grew, due mainly to the preferential reaction of Al with inwardly transporting oxygen along the heterogeneous phase boundaries. As the amount of ceramics in the coating increased, the oxidation resistance increased.

  • PDF

Al2O3/SiO2/Si(100) interface properties using wet chemical oxidation for solar cell applications

  • Min, Kwan Hong;Shin, Kyoung Cheol;Kang, Min Gu;Lee, Jeong In;Kim, Donghwan;Song, Hee-eun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.418.2-418.2
    • /
    • 2016
  • $Al_2O_3$ passivation layer has excellent passivation properties at p-type Si surface. This $Al_2O_3$ layer forms thin $SiO_2$ layer at the interface. There were some studies about inserting thermal oxidation process to replace naturally grown oxide during $Al_2O_3$ deposition. They showed improving passivation properties. However, thermal oxidation process has disadvantage of expensive equipment and difficult control of thin layer formation. Wet chemical oxidation has advantages of low cost and easy thin oxide formation. In this study, $Al_2O_3$/$SiO_2/Si(100)$ interface was formed by wet chemical oxidation and PA-ALD process. $SiO_2$ layer at Si wafer was formed by $HCl/H_2O_2$, $H_2SO_4/H_2O_2$ and $HNO_3$, respectively. 20nm $Al_2O_3$ layer on $SiO_2/Si$ was deposited by PA-ALD. This $Al_2O_3/SiO_2/Si(100)$ interface were characterized by capacitance-voltage characteristics and quasi-steady-state photoconductance decay method.

  • PDF

MCT 표면보호를 위한 양극산화막 성장 (Growth mechanism of anodic oxide for MCT passivation)

  • 정진원;왕진석
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권3호
    • /
    • pp.352-356
    • /
    • 1995
  • Native oxide layer on MCT (HgCdTe) has been grown uniformly in H$\_$2/O$\_$2/ electrolyte through anodic oxidation method. It has been determined that anodic oxidation of HgCdTe in H$\_$2/O$\_$2/ electrolyte proceeds immediately with the input of constant currents without any induction time required for anodic oxideation in KOH electrolyte. Oxide layer with the resistivity of 2*10$\^$10/.ohm.cm and the refractive index of 2.1 suggested the possibility of well matching combination layer with ZnS for MCT MIS device. XPS results indicated that the major components of oxide layer grown in H202 solution is TeO$\_$2/ with the possibility of small amounts of CdTeO$\_$3/.

  • PDF

백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구 (An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts)

  • 김영득;정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.

Characteristics of Sulfur Oxidation by a Newly Isolated Burkholderia spp.

  • JUNG JE, SUNG;JANG KI-HYO;SIHN EON-HWAN;PARK SEUNG-KOOK;PARK CHANG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.716-721
    • /
    • 2005
  • The role of an effective microbial species is critical to the successful application of biological processes to remove sulfur compounds. A bacterial strain was isolated from the soil of a malodorous site and identified as Burkholderia spp. This isolate was able to oxidize thiosulfate to sulfate, with simultaneous pH decrease and accumulation of elemental sulfur. The specific growth rate and the sulfate oxidation rate using the thiosulfate basal medium were $0.003 h^{-1}\;and\;3.7 h^{-1}$, respectively. The isolated strain was mixotrophic, and supplementation of $0.2\%$ (w/v) of yeast extract to the thiosulfate-basal medium increased the specific growth rate by 50-fold. However, the rate of sulfate oxidation was more than ten times higher without yeast extract. The isolate grew best at pH 7.0 and $30^{\circ}C$, and the sulfate oxidation rate was the highest at 0.12 M sodium thiosulfate. In an upflow biofilter, the isolated strain was able to degrade $H_2S\;with\;88\%$ efficiency at 8 ppm and 121/h of incoming gas concentration and flow rate, respectively. The cell density at the bottom of the column reached $3.2{\times}10^8$ CFU/(g bead) at a gas flow rate of 121/h.

Catalytic Properties of Ti-HMS with High Titanium Loadings

  • Jang, S.H.;Kim, M.J.;Ko, J.R.;Ahn, W.S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1214-1218
    • /
    • 2005
  • Ti-HMS samples in which titanium species exist in various forms of isolated tetrahedral state, finely dispersed $TiO_2$ cluster, and some in extra-framework anatase phase were prepared via a direct synthesis route using dodecylamine (DDS) as a structure directing agent by systematically varying the titanium loadings between 2 and 50 mol% Ti/(Ti+Si) in substrate composition. Physicochemical properties of the materials were evaluated using XRD, SEM/TEM, N2 adsorption, UV-vis and XANES spectroscopies. Catalytic properties of Ti-HMS in cyclohexene and 2,6-di-tert-butyl phenol (2,6-DTBP) oxidation using aqueous $H_2O_2$, and vapor phase photocatalytic degradation of acetaldehyde were evaluated. High $H_2O_2$ selectivity was obtained in cyclohexene oxidation, and cyclohexene conversion was found primarily dependent on the amount of tetrahedrally coordinated Ti sites. For bulky 2,6-DTBP oxidation and photocatalytic oxidation of acetaldehyde, on the other hand, conversions were found dependent on the total amount of Ti sites and maintaining an uniform mesoporous structure in the catalysts was not critical for efficient catalysis.

Ce가 첨가된 Pt/γ-Al2O3 촉매의 선택적 CO 산화반응 특성 (Preferential CO Oxidation over Ce-Promoted Pt/γ-Al2O3 Catalyst)

  • 김기혁;구기영;정운호;윤왕래
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.640-646
    • /
    • 2012
  • The effect of Ce promotion over 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts on the CO conversion and $CO_2$ selectivity was investigated in preferential CO oxidation (PrOx) to reduce the CO concentration less than 10 ppm in excess $H_2$ stream for polymer electrolyte membrane fuel cell (PEMFC). Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts were prepared by incipient wetness impregnation method and the loading amount of Pt was fixed at 1wt%. The content of Ce promoter which has excellent oxygen storage and transfer capability due to the redox property was adjusted from 0 to 1.5wt%. Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts exhibit high CO conversion and $CO_2$ selectivity at low temperatures below $150^{\circ}C$ due to the improvement of reducibility of surface PtOx species compared with the 1wt% $Pt/{\gamma}-Al_2O_3$ catalyst without Ce addition. When Ce content was more than 1wt%, the catalytic activity was decreased at over $160^{\circ}C$ in PrOx because of competitive $H_2$ oxidation. As a result, 0.5wt% Ce is optimal content not only to achieve high catalytic activity and good stability at low temperatures below $150^{\circ}C$ in the presence of $CO_2$ and $H_2O$ but also to minimize the $H_2$ oxidation at high temperatures.

생물난분해성 유기물질 함유 폐수처리를 위한 Fenton 산화법의 효율적 적용방안에 관한 연구 (A Study on the Efficient Applicability of Fenton Oxidation for the Wastewater Containing Non-biodegradable Organics)

  • 전세진;김미정
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.76-83
    • /
    • 2000
  • This research is about wastewater containing non-biodegradable TDI(Toluene Diisocyanate) that is treated by the activated carbon adsorption method. In the case of the Fenton oxidation process being applied to the existing process, optimal pH, reaction time, chemical dosing amount, removal rate, and cost were investigated. A pilot plant test was applied after finding optimal conditions with lab experiments. The optimal conditions were pH 3~5(COD removal rate 84~88%) and reaction time 30min~1hr. In higher $H_2O_2$ dosing amount, COD removal rate was a little higher. But there was little difference in the removal rate according to $FeSO_4{\cdot}7H_2O$ dosing amount. Treatment cost was economical in the case of the Fenton oxidation process being operated earlier than activated carbon adsorption system. But chemical dosing point, chemical mixing effect, chemical dosing amount, removal rate, and the cost of facility and others must be considered in practical process.

  • PDF

초임계수에서 Cephradine 산화반응속도 (Fundamental Kinetics of Cephradine Oxidation in Supercritical Water)

  • 김영권;김인배
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.133-139
    • /
    • 2004
  • The objective of this study was to investigate the destruction efficiency and to determine the fundamental parameters of oxidation kinetics under the supercritical water(SCW) condition. Target material was cephradine, toxic and antibiotic material, in the pharmaceutical wastewater. For this purpose, the effect of reaction temperature and oxidant were investigated on the destruction efficiency of cephradine. And the oxidation kinetics of cephradine was derived by using a empirical power-law model. The experiment was carried out in a cylindrical batch reactor made of Hastelloy C-276 which was endurable high temperature and pressure. The destruction efficiency of cephradine increased with increment of the temperature and reaction time. Also the type of oxidants was effected and oxidants(Air and $H_2O$$_2$) were enhanced the destruction efficiency. The global oxidation kinetics for cephradine has led to two rate expressions according to type of oxidant. - In the presence of air oxidant: Rate=k. $e^{-Ea}$RT/(Ceph.)$^{1.0}$ ( $O_2$)$^{0.51}$$\pm$0.05(k=3.27${\times}$$10^{5}$ sec. Ea=63.25 kJ/mole) - In the presence of $H_2O$$_2$ oxidant : Rate=kㆍ $e^{-Ea}$RT/(Ceph.)$^{1.0}$ ($H_2O$$_2$)$^{0.62}$$\pm$0.02(k=2.76${\times}$$10^4$/sec. Ea=47.65 kJ/mole)ole))