• Title/Summary/Keyword: $H_{2}$ evolution

Search Result 657, Processing Time 0.042 seconds

THE DYNAMICAL EVOLUTION OF GLOBULAR CLUSTERS WITH STELLAR MASS LOSS

  • Kim, Chang-Hwan;Chun, Mun-Suk;Min, Kyung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.11-23
    • /
    • 1991
  • The dynamical evolution of globular clusters is studied using the orbit-averaged multicomponent Fokker-Planck equation. The original code developed by Cohn(1980) is modi-fied to include the effect of stellar evolutions. Plommer's model is chosen as the initial density distribution with the initial mass function index $\alpha$=0.25, 0.65, 1.35, 2.35, and 3.35. The mass loss rate adopted in this work follows that of Fusi-Pecci and Renzini(1976). The stellar mass loss acts as the energy source, and thus affects the dynamical evolution of globular clusters by slowing down the evolution rate and extending the core collapse time Tcc. And the dynamical length scale $$R_c, $$R_h is also extended. This represents the expansion of cluster due to the stellar mass loss.

  • PDF

Solvothermal Synthesis and Photocatalytic Property of SnNb2O6

  • Seo, Se-Won;Lee, Chan-U;Seong, Won-Mo;Heo, Se-Yun;Kim, Sang-Hyeon;Lee, Myeong-Hwan;Hong, Guk-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.441-442
    • /
    • 2012
  • SnNb2O6 nanoplates were prepared by a solvothermal synthesis with water and ethanol mixed solvent. For improvement of their properties, as-prepared SnNb2O6 nanoplates also were calcined. The prepared powder was characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electron microscope (TEM), UV-vis spectroscopy, Raman spectrometer, Brunauer-Emmett-Teller (BET). The calcined nanoplates have a smaller surface area than the as-prepared nanoplates have. Nevertheless, in the case of the optical absorption properties, the calcined nanoplates could absorb more photon energy, due to their smaller band gaps. The Raman analysis revealed that the Nb-O bond length in the calcined nanoplates was longer than that in the as-prepared nanoplate. The higher optical absorption capability of the calcined nanoplates was attributed to the local structure variation within them. Furthermore the high crystallinity of the calcined nanoplates is effective in improving the generation of charge carriers. So, It was found that the calcined nanoplates exhibited superior photocatalytic activity for the evolution of H2 from an aqueous methanol solution than the as-prepared nanoplates under UV and visible irradiation. Therefore, the enhanced photocatalytic activity of the calcined nanoplate powder for H2 evolution was mainly attributed to its high crystallinity and improved optical absorption property resulting from the variation of the crystal structure.

  • PDF

Studies on the Denitrification in the Submerged Paddy Soil -IV. Influences of soil organic matter contents, soil temperature, pH values, kinds and levels of N-fertilizer on the evolution of N2O gas (논토양(土壤)의 탈질작용(脫窒作用)에 관(關)한 연구(硏究) -제(第)4보(報) 토양유기물함량(土壤有機物含量), 온도(溫度), pH, 질소비종(窒素肥種) 및 시비량(施肥量)이 탈질작용(脫窒作用)에 미치는 영향(影響))

  • Lee, Sang Kyu;Kim, Seung Hwan;Park, Jun Kyu;An, Sang Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 1987
  • A series of laboratory experiments were carried out to find the effects of soil organic matter contents, soil temperature, pH values, kinds and amount of nitrogen fertilizers on the denitrification-$N_2O$ gas evolution-. The results obtained were summarized as follows: 1. Denitrification rate, amount of $N_2O$ gas evolution, was influenced the order of organic matter contents>soil temperature>pH values>kinds of N-fertilizer>levels of N-fertilizer. 2. The highest dentrification rate was observed in organic matter content of 3.0%, pH values at 6.0 with application of $KNO_3$ at levels of 20 mgN/100g soil. 3. For the evolution of I mole $N_2O$ gas, averaged carbon consumption was obtained as 0.5 mole in all these experiment condition. However, the highest carbon consumption rate was obtained in organic matter contents for 1.0% with application of $(NH_4)_2SO_4$ at levels of 10 mgN/100g soil (1.06 mole) while lowest carbon consumption rate was obtained in organic matter contents for 3.0% with application of $KNO_3$ at levels of 20 mgN/100g soil (0.13 mole). 4. According to Michaelis-Menten's equation, the V/2 values for evolution of $N_2O$ gas was estimated by progress curve. The results obtained was as 550 ug for $(NH_2)_2CO$ and 1100 ug $N_2O/100g$ soil by application of $KNO_3$ in organic matter contents of 1.0% soil. On the other hand, when the application $(NH_4)_2SO_4$ the V/2 values of $N_2O$ gas was obtained as the amount of 490 ug/100g soil while V/2 values of $N_2O$ gas by application of $KNO_3$ was on the linear line in soil organic matter contents of 3.0%.

  • PDF

Growth of Elongated Grains in $\alpha$'-Sialon Ceramics ($\alpha$'-Sialon 세라믹스에서의 주상형 입자성장)

  • 신익현
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.246-250
    • /
    • 1999
  • The effects of the ${\beta}-Si_3N_4$ starting particle size and $\alpha$/$\beta$ phase transformation during sintering process on the microstructure evolution of Yttrium $\alpha$-Sialon ceramics were investigated. As-received ${\beta}-Si_3N_4$ powder (mean particle size: 0.54$\mu$m) and classified ${\beta}-Si_3N_4$ powder(mean particle size: $0.26\mu{m}$) were used as starting powders. With decreasing the starting particle size, the growth of elongated grains was enhanced, which resulted in the whisker -like microstructure with elongated grains. These results were discussed in relation to the two-dimensional nucleation and growth theory. In the specimen heat treated at $1600^{\circ}C$ for 10h before sintering at $1950^{\circ}C$for 1h under 40atm(2-step sintering), the grain size was smaller than of the 1-step sintering at 195$0^{\circ}C$ for 1h. However, bimodal microstructure evolution were not not remarkable in both sample, which is ascribed to the $\alpha$-phase contents existing in ${\beta}-Si_3N_4$ starting powder.

  • PDF

Utilization of EPRI ChemWorks tools for PWR shutdown chemistry evolution modeling

  • Jinsoo Choi;Cho-Rong Kim;Yong-Sang Cho;Hyuk-chul Kwon;Kyu-Min Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3543-3548
    • /
    • 2023
  • Shutdown chemistry evolution is performed in nuclear power plants at each refueling outage (RFO) to establish safe conditions to open system and minimize inventory of corrosion products in the reactor coolant system (RCS). After hydrogen peroxide is added to RCS during shutdown chemistry evolution, corrosion products are released and are removed by filters and ion exchange resins in the chemical volume control system (CVCS). Shutdown chemistry evolution including RCS clean-up time to remove released corrosion products impacts the critical path schedule during RFOs. The estimation of clean-up time prior to RFO can provide more reliable actions for RCS clean-up operations and transients to operators during shutdown chemistry. Electric Power Research Institute (EPRI) shutdown calculator (SDC) enables to provide clean-up time by Co-58 peak activity through operational data from nuclear power plants (NPPs). In this study, we have investigated the results of EPRI SDC by shutdown chemistry data of Co-58 activity using NPP data from previous cycles and modeled the estimated clean-up time by EPRI SDC using average Co-58 activity of the NPP. We selected two RFO data from the NPP to evaluate EPRI SDC results using the purification time to reach to 1.3 mCi/cc of Co-58 after hydrogen peroxide addition. Comparing two RFO data, the similar purification time between actual and computed data by EPRI SDC, 0.92 and 1.74 h respectively, was observed with the deviation of 3.7-7.2%. As the modeling the estimated clean-up time, we calculated average Co-58 peak concentration for normal cycles after cycle 10 and applied two-sigma (2σ, 95.4%) for predicted Co-58 peak concentration as upper and lower values compared to the average data. For the verification of modeling, shutdown chemistry data for RFO 17 was used. Predicted RCS clean-up time with lower and upper values was between 21.05 and 27.58 h, and clean-up time for RFO 17 was 24.75 h, within the predicted time band. Therefore, our calculated modeling band was validated. This approach can be identified that the advantage of the modeling for clean-up time with SDC is that the primary prediction of shutdown chemistry plans can be performed more reliably during shutdown chemistry. This research can contribute to improving the efficiency and safety of shutdown chemistry evolution in nuclear power plants.

Hydrogen Evolution from Biomass-Derived Carbohydrates by Clostridia (Clostridia에 의한 Biomass 구성당으로부터의 수소생성)

  • Bae, Moo;Yi, Hye-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.6-11
    • /
    • 1990
  • Hydrogen evolution from biomass-derived carbohydrates by some Clostridia and optimal culture conditions for hydrogen evolution were investigated. Among the organisms tested, Clostridium butyricum was efficient hydrogen producer with starch, xylan, pectin, cellobiose and xylose. In batch fermentation of Cl. butyricum, optimal conditions for hydrogen evolution were achieved at pH 7.0-8.5, 10-50 mM phosphate, and 2% (w/v) glucose. Total amount of molecular hydrogen evolved by the organism slightly increased at the presence of acetate (<150 mM) or butyrate (<20 mM) in the initial fermentation medium. Especially, in case of more than the above concentration of butyrate, growth and hydrogen evolution were dramatically inhibited. In the conditions were described here, 70 mmole of molecular hydrogen per mg of DCW was produced with 1%(w/v) glucose by the organism.

  • PDF

KYDISC program : Galaxy Morphology in the Cluster Environment

  • Oh, Sree;Sheen, Yun-Kyeong;Kim, Minjin;Lee, Joon Hyeop;Kyeong, Jaemann;Ree, Chang H.;Park, Byeong-Gon;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.60.3-61
    • /
    • 2016
  • Galaxy morphology involves complex effects from both secular and non-secular evolution of galaxies. Although it is a final product of galaxy evolution, it gives a clue to the processes that the a galaxy has gone through. Galaxy clusters are the sites where the most massive galaxies are found, and thus the most dramatic merger histories are embedded. Our deep imaging program (${\mu}{\sim}28\;mag\;arcsec^{-2}$), KASI-Yonsei Deep Imaging Survey for Clusters (KYDISC), targets 14 Abell clusters at z = 0.016 - 0.14 using IMACS/Magellan telescope and MegaCam/CFHT to investigate cluster galaxies especially on low surface brightness features related to galaxy interactions. We visually classify galaxy morphology based on criteria related to secular or merger related evolution and find that the morphological mixture of galaxies varies considerably from cluster to cluster. Moreover it depends on the characteristics (e.g. cluster mass) of cluster itself which implies that environmental effects in cluster scale is also an important factor to the evolution of galaxies together with intrinsic (secular) and galaxy merger. Our deep imaging survey for morphological inspection of cluster galaxies with low surface brightness is expected to be a useful basis to understand the nature of cluster galaxies and their internal/external evolutionary path.

  • PDF

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.

Improvement of Photoheterotrophic $H_2$ production of Rhodobacter sphaeroides by Removing Ammonium Ion Effect Exerted on Nitrogenase (Rhodobacter sphaeroides의 질소고정효소에 미치는 암모니움 이온 효과 제거를 통한 수소생성 증진)

  • Jin, Sang-Hoon;Kim, Mi-Sun;Lee, Jeong-Kug
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.418-424
    • /
    • 2005
  • Photoheterotrophic evolution of molecular hydrogen by Rhodobacter sphaeroides is mediated by nitrogenase that is regulated transcriptionally and post-translationally by ammonium ion. Two PII-like proteins, GlnB and GlnK, play key roles in mediating inhibition and repression of nitrogenase in the presence of ammonium ion. glnB and glnK of R. sphaeroides were interrupted to abolish the ammonium ion effect controlling nitrogenase. Ammonium ion effect was still observed in mutant having an interruption in either glnB or glnK. However, the nitrogenase activity of glnB-glnK double mutant is not affected by ammonium ion. $H_2$ evolution was improved by increasing gene dosages of nitrogenase-coding genes, nifHDK in trans in glnB-glnK double mutant.