• Title/Summary/Keyword: $HSO_3$

Search Result 97, Processing Time 0.029 seconds

An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV (상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구)

  • Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.

Internal Mixing of Pollutants for Submicron Particles Observed during Springtime in Japan

  • Matsumoto, Jun;Narukawa, Masahiro;Takahashi, Kenshi;Matsumi, Yutaka;Yabushita, Akihiro;Shimizu, Atsushi;Matsui, Ichiro;Sugimoto, Nobuo
    • Asian Journal of Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.27-41
    • /
    • 2009
  • Internally mixed states of submicron particles during transport from the Asian continent to the Pacific Ocean were analyzed using a single-particle time-offlight mass spectrometer. The observation was conducted at Tsukuba in Japan in the spring of 2005 in order to investigate springtime transport of particles from the continent. The sum of ion intensities of sulfate (${HSO_4}^-$) detected in particles originating from the continental air masses counted for 75% of that in all particles during the observation. By analyzing correlations among compounds, origins and internally mixed states of compounds were estimated. It was found that nitrate was mixed with sulfate-rich particles as the air mass approached Japan. It was confirmed that Asian mineral dust particles played significant roles for transport of continental sulfate to Japan. As a result of analysis on internal mixing of chlorine and nitrate, it was implied that the chlorine loss in fine sea salt particles had already proceeded at Tsukuba. It was characteristic that fluoride ions were significantly detected, coal combustion in the Asian Continent can be an important source of fluorides detected in Japan through the westward transportation of fine particles including fluorides.

Operating Characteristics of 0.4 MW-Scale Gas Dispersion Type FGD Absorber (0.4 MW급 가스분사식 배연탈황 흡수탑의 운전 특성)

  • An, Hi-Soo;Kim, Ki-Hyoung;Park, Seung-Soo;Park, Kwang-Kyu;Kim, Young-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • This study was carried out to investigate the effect of operating and design conditions of gas dispersion type of absorber on $SO_2$ removal efficiency. pH difference between upper and lower part of gas dispersing plate of absorber was 0.2, which was relatively low. This was supposed that recirculation capacity of absorbing liquid between froth zone and reaction zone of absorber be increased by oxidation air injection through liquid riser which acted as liquid pump. Test results showed that $SO_2$ removal efficiency was more sensitive than absorber ${\Delta}P$. High $SO_2$ removal even at lower pH resulted from very low concentration of $HSO_3^-$ ion in absorbing liquid because of direct supply of dissolved oxygen into froth zone. 96% of $SO_2$ removal efficiency was obtained under the condition of absorber pH 5.2, flue gas flow rate of $1,530\;Nm^3/hr$, inlet $SO_2$ concentration of 800 ppm, absorber ${\Delta}P$ of 250mmAq. The following equation by a multiple linear regression was obtained to describe the relationship between $SO_2$ removal and operating variables. $$f=1-{\exp}(-1.3939+1.060pH+0.0139{\Delta}P-0.00267G-0.000064SO_2Conc.),\;R^2=0.9719$$

Effect of Additives on the Viability of Bifidobacteria Loaded in Alginate Poly-l-lysine Microparticles during the Freeze-drying Process

  • Cui, Jing-Hao;Cao, Qing-Ri;Choi, Yun-Jaie;Lee, Kyung-Hoon;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.707-711
    • /
    • 2006
  • Bifidobacteria-loaded alginate poly-l-lysine microparticles (bap microparticles) were prepared using an air atomization method and then freeze-dried. The viability of the bap microparticles was investigated as a function of the amount of the bifidobacteria cultures, and the addition of a yeast extract, cryoprotectants, antioxidants and neutralizer. The size of the bap microparticles with and without the bifidobacteria was $84.8{\pm}28.5\;{\mu}m$ ($mean{\pm}standard$ deviation) and $113.1{\pm}38.5\;{\mu}m$, respectively. The surface morphology was slightly ellipsoid and wrinkled regardless of the incorporating bifidobacteria. The viability gradually decreased with increasing freeze-drying time. Free-flowing powdered bap microparticles were obtained at least 12 h after freeze-drying the wetted slurry of bap microparticles. However, the particles tended to aggregate when either lactose or ascorbic acid was added. The addition of a yeast extract, cryoprotectants (glycerol and lactose), antioxidants ($NaHSO_3$ and ascorbic acid) and neutralizer $(Mg_3(PO_4)_2)$ resulted in a significantly higher viability of the bifidobacteria in the bap microparticles after freeze-drying (0.34-1.84 log) compared with the culture alone.

Effect of vegetable oils with different fatty acid composition on high-fat diet-induced obesity and colon inflammation

  • Thomas, Shalom Sara;Cha, Youn-Soo;Kim, Kyung-Ah
    • Nutrition Research and Practice
    • /
    • v.14 no.5
    • /
    • pp.425-437
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Different fatty acids exert different health benefits. This study investigated the potential protective effects of perilla, olive, and safflower oils on high-fat diet-induced obesity and colon inflammation. MATERIALS/METHODS: Five-week old, C57BL/6J mice were assigned to 5 groups: low-fat diet (LFD), high-fat diet (HFD) and high-fat diet supplemented with-perilla oil (HPO), olive oil (HOO), and safflower oil (HSO). After 16 weeks of the experimental period, the mice were sacrificed, and blood and tissues were collected. The serum was analyzed for obesity- and inflammation-related biomarkers. Gene expression of the biomarkers in the liver, adipose tissue, and colon tissue was analyzed. Micro-computed tomography (CT) analysis was performed one week before sacrifice. RESULTS: Treatment with all the three oils significantly improved obesity-induced increases in body weight, liver weight, and epididymal fat weight as well as serum triglyceride and leptin levels. Treatment with perilla oil (PO) and safflower oil (SO) increased adiponectin levels. The micro-CT analysis revealed that PO and SO reduced abdominal fat volume considerably. The mRNA expression of lipogenic genes was reduced in all the three oilsupplemented groups and PO upregulated lipid oxidation in the liver. Supplementation of oils improved macroscopic score, increased colon length, and decreased serum endotoxin and proinflammatory cytokine levels in the colon. The abundance of Bifidobacteria was increased and that of Enterobacteriaceae was reduced in the PO-supplemented group. All three oils reduced proinflammatory cytokine levels, as indicated by the mRNA expression. In addition, PO increased the expression of tight junction proteins. CONCLUSIONS: Taken together, our data indicate that the three oils exert similar anti-obesity effects. Interestingly, compared with olive oil and SO, PO provides better protection against high-fat diet-induced colon inflammation, suggesting that PO consumption helps manage inflammation-related diseases and provides omega-3 fatty acids needed by the body.

Recovery of Nickel from Waste Pickling Solution with Column Extractor (컬럼식 연속추출장치에 의한 산세폐액중 Ni의 회수)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 1998
  • A study on thc recovcry oi nickel from waste pickling solutions removed li-ee nil~ica cid and hydmflnoric acid is carried out with pulsed column extractor for thc industrial application. The ~esults show that thc Iron and chromium arc efteclively elunmatcd from the waste solution by precipitalion as the form of hydraxidc with thc adjustment of pH with CaCO;, whlle the nickel is not prcc~pitatcd. Thc cxlraction eficicncy ol nickel with column cxtraclor generally improves 8s the pulse velosity (product of amplmde and frequency) incrcascs, optimum pcrfarmancc typically occuring slightly below an amplihldefrecluency product which results in flooding the column because of excessive emulsiIicalian And the nickel loaded in the organic is erfeclively conce~~trtratebdy ZM H2S0,, ~ I It he stlipping stage. The solubility of NiSO, in the H,SO, solution dccreaaes w~th thc higher H,SO, concentralion and appears to be 55 grL in the 2M HSO* solulian.

  • PDF

Removal Characteristics of Phosphorus at Synthetic Variation of Zirconium Mesoporous Structure (지르코늄 메조기공 구조체의 합성조건 변화에 따른 인 제거 특성)

  • Lee, Sang-hyup;Lee, Byoung-cheun;Lee, Kwan-yong;Choi, Yong-su;Park, Ki-young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.637-642
    • /
    • 2005
  • The focus of this study was to examine the phosphorus removal characteristic by zirconium mesoporous structured material synthesized on various conditions. The zirconium sulfate-surfactant mesoporous structured material(ZS) was synthesized by hydro-thermal synthesis. The material has regular hexagonal array of surfactant micelles and sulfate ion ($HSO_4{^-}$). We confirmed that sulfate ion in zirconium mesoporous structured material can be ion-exchanged with phosphate ion ($H_2PO_4{^-}$) in phosphoric acid solution. On the X-ray diffraction (XRD) pattern of ZS, three peaks which shows the important characteristics of hexagonal crystal lattice were observed at (100), (110) and (200). The transmission electron micrograph (TEM) show high crystallization with pore size about $47{\AA}$. The maximum adsorption capacity of ZS was as great as 3.2 mmol-P/g-ZS. From the adsorption isotherm, correlation coefficients were higher for the Langmuir isotherm than the Freundlich isotherm. With the respect of chain length of surfactant, the adsorption capacity for phosphate synthesized with C12 was higher than C16 and C18. The highest amount of adsorbed phosphate on ZS was observed at the surfactant-to-zirconium molar ratio of 0.5 to 1.

Development of Semicontinuous Measurement System of Ionic Species in PM2.5

  • Hong, Sang-Bum;Chang, Won-il;Kang, Chang-Hee;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1505-1515
    • /
    • 2009
  • A new method to semicontinuously determine $PM_{2.5}$ ionic species with a short time resolution is described in detail. In this system, a particle collection section (mixing part, particle collection chamber, and air/liquid separator) was developed. A Y-type connector was used to mix steam and an air sample. The particle collection chamber was constructed in the form of a helix coil and was cooled by a water circulation system. Particle size growth occurred due to the high relative humidity and water absorbed particles were efficiently collected in it. Liquid samples were drained out with a short residence time (0.08-0.1 s). The air/liquid separator was also newly designed to operate efficiently when the flow rate of the air sample was 16.7 L $min^{-1}$. For better performance, the system was optimized for particle collection efficiency with various types of test aerosols such as ($NH_4)_2SO_4,\;NaCl,\;NH_4HSO_4,\;and\;NH_4NO_3$. The particle collection efficiencies were almost 100% at different concentration levels in the range over 500 nm in diameter but 50-90% in the range of 50-500 nm under the following experimental conditions: 15 coil turns, a water flow rate for steam generation of 0.65 mL $min^{-1}$, and an air sample flow rate of 16.7 L $min^{-1}$. Finally, for atmospheric applications, chemical compositions of $PM_{2.5}$ were determined with a time resolution of 20 min on January 11-24, 2006 in Seoul, Korea, and the chemical characteristics of $PM_{2.5}$ ions were investigated.

Optimized phos-tag mobility shift assay for the detection of protein phosphorylation in planta

  • Hussain, Shah;Nguyen, Nhan Thi;Nguyen, Xuan Canh;Lim, Chae Oh;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.322-327
    • /
    • 2018
  • Post-translational modification of proteins regulates signaling cascades in eukaryotic system, including plants. Among these modifications, phosphorylation plays an important role in modulating the functional properties of proteins. Plants perceive environmental cues that directly affect the phosphorylation status of many target proteins. To determine the effect of environmentally induced phosphorylation in plants, in vivo methods must be developed. Various in vitro methods are available but, unlike in animals, there is no optimized methodology for detecting protein phosphorylation in planta. Therefore, in this study, a robust, and easy to handle Phos-Tag Mobility Shift Assay (PTMSA) is developed for the in vivo detection of protein phosphorylation in plants by empirical optimization of methods previously developed for animals. Initially, the detection of the phosphorylation status of target proteins using protocols directly adapted from animals failed. Therefore, we optimized the steps in the protocol, from protein migration to the transfer of proteins to PVDF membrane. Supplementing the electrophoresis running buffer with 5mM $NaHSO_3$ solved most of the problems in protein migration and transfer. The optimization of a fast and robust protocol that efficiently detects the phosphorylation status of plant proteins was successful. This protocol will be a valuable tool for plant scientists interested in the study of protein phosphorylation.

Absorption Characteristics of Sulfur Dioxide in Jet Bubbling Reactor (가스분사반응기에서의 SO2 흡수 특성)

  • Choi, Byung-Sun;Park, Seung-Soo;Kim, Yung-whan
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.836-842
    • /
    • 1994
  • The optimum design conditions of gas sparger pipe and the effects of operating variables on $SO_2$ removal efficiency have been examined in Jet Bubbling Reactor. Geometry of gas sparser pipe of Jet Bubbling Reactor is a very important factor to obtain a effective gas-liquid contact. Test results revealed that Reynolds numbers at sparger and slot have to be kept greater than 12,000 identically at a given gas velocity. $SO_2$ removal efficiency was a function of ${\Delta}P$, pH, inlet $SO_2$ concentration and particle size of limestone and was more sensitive to the change of ${\Delta}P$ than to the changes of others. The ${\Delta}P$ of at least 230mmAq must be maintained to acheive the above 90% $SO_2$ removal at pH of 4.0 which is considered as adequate operating pH. Higher $SO_2$ removal efficiency was obtained even at lower pH ranges, which resulted from the complete oxidation of the absorbed $SO_2$ to sulfates by adding air and consequently from the reduction of $SO_2$ equillibrium partial pressure in the gas-liquid interface The 99.5% of the limestone utilization was attained in pH range from 3.0 to 5.0 with regardless to the particle size of limestone employed.

  • PDF