• Title/Summary/Keyword: $HNO_3$

Search Result 619, Processing Time 0.026 seconds

The Effects of the Residual Ba and Zr on the Acid Pickling in Case of the Recovering of Zr in Pickling Waste Acid through the BaF2 Precipitation Process (BaF2 침전 공정을 통한 폐산세정액 내 Zr 회수 시 잔존 Ba 및 Zr이 산세정에 미치는 영향)

  • An, Chang Mo;Choi, Jeong Hun;Han, Seul Ki;Park, Chul Ho;Kahng, Jong Won;Lee, Young Jun;Lee, Jong Hyeon
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.97-104
    • /
    • 2017
  • Nuclear fuel cladding tubes are manufactured through pilgering and the annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zirconium (Zr) is dissolved in a HF and $HNO_3$ acid mixture during the process and the pickling waste acid, including the dissolved Zr, is completely discarded after neutralization. This study observes the effects of the residual impurities (Ba) in the pickling solution regenerated from the $BaF_2$ precipitation process on the waste pickling solution. In addition, the concentration of Ba and Zr for the actual nuclear fuel cladding tube process was optimized. The regenerated pickling solution was tested through a pilot plant pickling process device that simulates the commercial pickling process of nuclear fuel cladding tubes, and the pickling efficiency was analyzed through AFM analysis of the roughness of the cladding tube surface.

Recovery of Silver from Nitrate Leaching Solution of Silicon Solar Cells (실리콘 태양전지 질산침출액에서 LIX63를 이용한 은(Ag) 회수)

  • Cho, Sung-Yong;Kim, Tae-Young;Sun, Pan-Pan
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2021
  • Spent photovoltaic module is one of the important resource of silver, while related research concerning silver recovery remains limited. In our previous research, HNO3 was utilized to dissolve Ag(I) and Al(III) from the spent silicon solar cells. In order to recover Ag(I) from the leachate of a silicon solar cell, the present study made use of a nitrate solution containing Ag(I) and Al(III), which was subjected to a solvent extraction process with 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX63). Ag(I) was selectively extracted with LIX63 over Al(III) from the nitrate leach solution. Subsequently, quantitative stripping of Ag(I) from the loaded LIX63 was performed by using 20% ammonia water. The McCabe-Thiele plots for the extraction and stripping isotherms of Ag(I) were also constructed. Extraction and stripping simulation tests confirmed an Ag(I) extraction and stripping efficiency of >99.99% and 98.9%, respectively with high purity Ag (99.998%) and Al (99.99%) solution. A process flow sheet for Ag(I) recovery from the nitrate leach solution was proposed.

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

Assessment on the Content of Heavy Metal in Orchard Soils in Middle Part of Korea (중부지역 과수원 토양중의 중금속 함량 평가)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • Objectives of this study were to monitor the distribution of heavy metals, to compare extractable heavy metal with total content and to investigate the relationships between soil physico-chemical properties and heavy metals in orchard soil. Sampling sites were 48 in Gyeonggi, 36 in Gangwon, 36 in Chungbuk, and 44 in Chungnam, Soils were collected farm form two depths, 0 to 20 and 20 to 40 cm (here after referred to as upper and lower layers) from March to May in 1998. Total contents of heavy metal in soils were analyzed by ICP-OES after acid digestion ($HNO_3$:HCl:$H_2O_2$) whereas extractable contents were measured after successive extraction of 0.1N-HCl, 0.05 M-EDTA, and 0.005 M-DTPA. Mercury was analysed by mercury atomizer. The average contents of Cd Cu, and Pb in the extractant with 0.1N-HCl at upper layer were 0.080, 4.23, and 3.42 mg/kg, respectively. As content in the extractant with 1N-HCl was 0.44 mg/kg, and total contents of Zn, Ni and Hg were 78.9, 16.1, and 0.052 mg/kg, respectively. The ratios of concentrations of heavy metals to threshold values (Cd 1.5, Cu 50, Pb 100, Zn 300, Ni 40, Hg 4 mg/ke in Soil Environmental Conservation Act in Korea (2001) were low in the range of $1/2.5{\sim}1/76.9$ in orchard soils. The ratios of extractable heavy metal to total content ranged $5.4{\sim}9.21%$ for Cd, $27.9{\sim}47.8%$ for Cu, $12.6{\sim}21.8$% for Pb, $15.8{\sim}20.3%$ for Zn, $5.3{\sim}6.3%$ for Ni, and $0.7{\sim}3.6%$ for Zn, respectively. Cu and Pb contents in 0.05 M-EDTA extractable solution were higher than those in the other extractable solution. Total contents of Cd, Ni and Ni in soils were negatively correlated with sand content but positively correlated with silt and clay contents. Ratios of extractable heavy metal to total content were negatively correlated with clay content but ai and Ni contents were positively correlated with soil pH, organic matter, and available phosphorous. Therefore, the orchard soil was safe because the heavy metal contents of orchard soil were very low as compared to its threshold value in the Soil Environmental Conservation Act. However, it need to consider the input of agricultural materials to the agricultural land for farming practices for assessment of heavy metals.

Effects of Simulated Acid Rain on Growth and Physiological Characteristics of Ginkgo biloba L. Seedlings and on Chemical Properties of the Tested Soil -I. Seed Germination and Growth (인공산성우(人工酸性雨)가 은행(銀杏)나무(Ginkgo biloba L.) 유묘(幼苗)의 생장(生長), 생리적(生理的) 특성(特性) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響) -I. 종자발아율(種子發芽率)과 생장(生長))

  • Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.2
    • /
    • pp.99-108
    • /
    • 1987
  • Half-sib seeds and one-year-old seedlings of Ginkgo biloba were treated with various simulated acid rains (pH 2.0, pH 3.0, pH 4.0 and pH 5.0) to examine the effects of acid rain on seed germination and seedling growth. The seeds were sown in a pot ($4500cm^3$) containing one of three different soils (nursery soil, mixed soil and sandy soil) and the seedlings were grown in the same pots as the seeds. Simulated acid rain was made by diluting sulfuric and nitric acid solution ($H_2SO_4$: $HNO_3$ = 3:1, V/V) with tap water and tap water (pH6.4), and treated by 5mm each time for three minutes during the growing seasons (April to October 1985 and April to August 1986). Acid rain treatments were done three times per week to potted seeds and seedlings by spraying the solutions. The seed germination, seedling growth and physiological characteristics of potted seedlings were compared among three soil types as well as among the various pH levels. The results obtained in this study were as follows: 1. Seed germination of Ginkgo biloba decreased significantly at pH 2.0 level in the field test, and also at the levels of both pH 2.0 and pH 3.0 in the laboratory test, compared to that at control. 2. For two-year-old seedlings, total, top and root dry weights per seedling were significantly different among the three soil types and among the levels of pH, and shoot growth was different only among the levels of pH. 3. For one-year-old seedlings, height and total and stem-branch dry weights per seedling were significantly different among the levels of pH.

  • PDF

Effects of Simulated Acid Rain on Growth and Physiological Characteristics of Ginkgo biloba L. Seedlings and on Chemical Properties of the Tested Soil -II. Leaf Surface Area, Visible Leaf Injury, Leaf Chlorophyll Content and Photosynthetic Ability of the Leaf Tissue (인공산성우(人工酸性雨)가 은행(銀杏)나무(Ginkgo biloba L.) 유묘(幼苗)의 생장(生長), 생리적(生理的) 특성(特性) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響) -II. 엽면적(葉面積), 가시적(可視的) 엽피해(葉被害), 엽록소함량(葉綠素含量) 및 엽조직(葉組織)의 광합성능(光合成能))

  • Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.3
    • /
    • pp.230-240
    • /
    • 1987
  • Half-sib seedlings of Ginkgo biloba (one-year-old) were treated with various simulated acid rains(pH2.0, pH3.0, pH4.0 and pH5.0) to examine the effects of acid rain on leaf surface area, leaf injury, leaf chlorophyll content and photosynthetic ability of the leaf tissue. The seedlings were grown in a pot($4500cm^3$) containing one of three different soils(nurseryy soil, mixed soil and sandy soil). Simulated acid rain was made by diluting sulfuric and nitric acid solution($H_2SO_4:HNO_3=3:1$, V/V) with tap water and tap water(pH6.4), and treated by 5mm each time for three minutes during the growing seasons(April to October 1985). Acid rain treatments were done three times per week to potted seedlings by spraying the solutions. The results obtained in this study were as follows : 1. Leaf surface area per seedling at pH2.0 level was the lowest among the levels of pH, but those at other pH levels were not significantly different. 2. Leaf injury(injured leaf rate and injured leaf area) increased with decreasing pH levels of acid rain. 3. Leaf chlorophyll content measured during the period June through October was significantly different among the soil types, and that of the seedling in nursery soil was the highest. The lower pH levels of simulated acid rain was treated ; more leaf chlorophyll content was measured at the beginning of treatment, and the more it severely decreased at the late growing period. 4. Photosyntetic abilities, and the highest value was shown in nursery soil. Significand difference in photosynthetic ability among the levels of pH was observed only in August. Photosynthetic ability increased with decreasing pH levels at the beginning of treatment, but decreased rapidly after July.

  • PDF

Effects of Simulated Acid Rain on Growth and Physiological Characteristics of Ginkgo biloba L. Seedlings and on Chemical Properties of the Tested Soil -III. Effects on Chemical Properties of the Tested Soil- (인공산성우(人工酸性雨)가 은행(銀杏)나무 Ginkgo biloba L. 유묘(幼苗)의 생장(生長), 생리적(生理的) 특성(特性) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響) -III. 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響)-)

  • Kim, Gab Tae;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.1
    • /
    • pp.43-52
    • /
    • 1988
  • One-year-old seedlings of Ginkgo biloba were treated with various simulated acid rains(pH 2.0, pH 3.0, pH 9.0 and pH 5.0) to examine the effects of simulated acid rain on the chemical properties of the tested soil. The seedlings were grown in a pot($4500cm^3$)containing one of three different soils(nursery soil, mixed soil and sandy soil). Simulated acid rain was made by diluting sulfuric and nitric acid solution($H^1SO^4$ : $HNO^3$ =3 : 1, V/V) with tap water and tap water(pH 6.4), and treated by 5mm each time for three minutes during the growing seasons(April to October 1985). Acid rain treatments were done three times per week to potted seedlings by spraying the solutions. The chemical properties of potting media were compared among three soil types as well as among the various pH levels. The results obtained in this study were as follows : 1. Exchangeable calcium and magnesium contents and base saturation of the soil decreased with decreasing pH levels of acid rain, and their decreasing rates were as follows : sandy soil was the highest, followed by mixed and nursery soils, However, exchangeable aluminum content rather increased as the pH levels decreased. 2. Available phosphate in the soil decreased as the pH levels of acid rain decreased. Its content increased in nursery soil, compared with those before acid gain treatment, Gut decreased in mined and sandy soils. 3. Soil sulfate and nitrate contents increased remarkably as the pH levels decreased, and the only significant difference in the sulfate was found among the pH levels. Soil sulfate content was the highest in nursery soil, followed by mixed and sandy soils.

  • PDF

A Study on the Behavior and Deposition of Acid Precipitation-comparison of Chemical Composition of Rain Water between Chunchon and seoul (산성강하물의 침착량과 동태 해명에 관한 연구-춘천과 서울 강우의 화학조성 비교)

  • Kim, Man-Goo;Kang, Mi-Hee;Lim, Yang-Suck;Park, Ki-Jun;Hwang, Hoon;Lee, Bo-Kyung;Hong, Seung-Hee;Lee, Dong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.89-100
    • /
    • 1999
  • The rain water samples were collected at Chunchon and Seoul by using wet only automatic sampler from January 1996 through 1997. The daily base rain water samples collected over than 95% rainy events components, $SO_4^{-2}$, $NO_3^-$, $CI^-$, NH_4^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$, and $K^+$, by ion chromatography. In 1996, about 77% of sampled rain water showed below pH 5.6 and the 60% of rain water was lower than pH 5.0. The volume weighted average pH was 4.7 at all sites. In 1997, the volume weighted average pH was 4.6 and 4.9 at Seoul and Chunchon, respectively. Among the rain water samples,, 87% and 55% fo samples showed below than pH 5.6 and 5.0, respectively. The pH value of Chunchon was significantly (p<0.05) lower than Seoul at the rain samples for less than 20mm rainfall. However conductivity of the rain samples were 20.9$\mu$S/cm for 1996 and 27.7$\mu$S/cm for 1997 at Seoul, and 19.1$\mu$S/cm for 1996 and 14.1$\mu$S/cm for 1997 at Chunchon. $H_2SO_4$ and $HNO_3$ contributed 65.9% and 29.6% of free acidity at Seoul, respectively. The ratio of [$NO_3^-$]/[nss-$SO_4^{-2}$] were 0.43 at Seoul and 0.51 at Chunchon for rain samples for less than 20mm rainfall. The annual wet deposition of $CI^-$, $NO_3^-$, $SO_4^{-2}$, $H^+$M, $Na^+$, NH_4^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$, respectively, 568.8kg/$ extrm{km}^2$, 1489.3kg/$\textrm{km}^2$, 3184.8kg/$\textrm{km}^2$, 20.9kg/$\textrm{km}^2$, 249.4kg/$\textrm{km}^2$, 1091.2kg/$\textrm{km}^2$, 189.8kg/ $\textrm{km}^2$, 90.2kg/$\textrm{km}^2$ and 702.4kg/$\textrm{km}^2$ at Seoul for 1996; 656.4kg/$\textrm{km}^2$, 2029.7kg/$\textrm{km}^2$, 3280.7kg/$\textrm{km}^2$, 27.2kg /$\textrm{km}^2$, 229.4kg/$\textrm{km}^2$, 1063.9kg/$\textrm{km}^2$, 106.9kg/$\textrm{km}^2$, 78.2kg/$\textrm{km}^2$, 645.3kg/$\textrm{km}^2$ at Seoul for 1997; 116.9kg/ $\textrm{km}^2$, 983.3kg/$\textrm{km}^2$, 1797.0kg/$\textrm{km}^2$, 21.4kg/$\textrm{km}^2$, 83.2kg/$\textrm{km}^2$, 648.1kg/$\textrm{km}^2$, 78.0kg/$\textrm{km}^2$, 22.2kg/$\textrm{km}^2$, 368.8kg/$\textrm{km}^2$ at chunchon for 1996; 100.2kg/$\textrm{km}^2$, 1077.6kg/$\textrm{km}^2$, 1754.0kg/$\textrm{km}^2$, 13.4kg/$\textrm{km}^2$, 146.0kg/$\textrm{km}^2$, 602.3kg/$\textrm{km}^2$, 88.8kg/$\textrm{km}^2$, 16.2kg/$\textrm{km}^2$ and 206.8kg/$\textrm{km}^2$ at chunchon for 1997.

  • PDF

Experimental Studies on Influence of Foaming Agents on the Properties of Mortar (기포제가 모르터의 제성질에 미치는 영향에 관한 실험적 연구)

  • Sung, Chan-Yong;Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.1
    • /
    • pp.46-61
    • /
    • 1985
  • This study was performed to obtain the basic data which can be applied to the use of foaming mortars. The data was based on the properties of foaming mortars depending upon various mixing ratios and addings to compare those of cement mortar. The foaming agents which was used at this experiment were pre-foamed type and mix-foaming type which is being used as mortar structures. The foaming mortar, mixing ratios of cement to fine aggregate were 1:1, 1: 2, 1 : 3 and 1 : 4. The addings of foaming agents were 0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of cement weight. The results obtained were summarized as follows; 1. At the mixing ratio of 1 : 1, the lowest water-cement ratios were showed by foaming mortars, respectively. But it gradually was increased in poorer mixing ratio and decreased in more addition of foaming agent. The water-cement ratios were decreased up to 1. 8~22. 0% by G, 2. 2~24. 1 % by U and 0. 7~53. 1% by J foaming mortar than cement mortar. 2, At the mixing ratio of 1 : 1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The bulk densities were decreased up to 1. 4~20. 7% by G, 2. 3~23. 7% by U and 26. 5~56. 5% by J foaming mortar than cement mortar. Therefore, foaming mortar could be utilized to the constructions which need low strengths. 3. At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, according to the absorption rate when immersed in 72 hours, the absorption rates were showed up to 1. 01~1. 24 times by G, 1. 03~1. 58 times by U and 1. 10~5. 91 times by J foaming mortar than cement mortar. It was significantly higher at the early stage of immersed time than cement mortar. 4. At the mixing ratio of 1:1, the lowest air contents were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Air contents were contented up to 4. 0~17. 2 times by G, 5. 2~23. 2 times by U and 23. 8~74. 5 times by J foaming mortar than cement mortar. 5. At the mixing ratio of 1 : 1, the lowest decreasing rates of strengths were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, the strengths of 28 days were decreased 0. 4~2. 2% than those of 7 days by foaming mortar, respectively. Also, the correlations between compressive and tensile strength, compressive and ending strength, tensile and bending strength were highly significant as a straight line shaped, respectively. 6. The correlations between absorption rate, air content, compressive strength and bulk density, absorption rate, compressive strength and air content were highly significant, respectively. The multiple regression equations of water-cement ratio, bulk density, absorption ate, air content, compressive strength, tensile strength and bending strength were computed depending on a function of mixing ratio and addition of foaming agent. It was highly significant, respectively. 7. At the mixing ratio of 1 : 1, the highest strengths were showed by cement mortar and foaming mortars, by chemical reagents. But, it gradually was decreased in poorer mixing ratio. The decreasing rates of strengths were in order of H $_2$S0 $_4$, HNO$_3$ and HCI, J,U,G foaming mortar and cement mortar. Specially, at the each mixing ratio, each chemical reagent and 3.0% of foaming agent, J foaming mortar was collapsed obviously. Therefore, for the structures requiring acid resistence, adding of foaming agent should be lower than 3.0%.

  • PDF

Distribution of Cadminum Fractions in Paddy Soils and Their Relation to Cadmium Content in Brown Rice (답토양중(畓土壤中) Cadmium의 형태별(形態別) 분포(分布)와 현미중(玄米中) Cadmium 함량(含量)과의 관계연구(関係硏究))

  • Lim, Sun-Uk;Kim, Sun-Kwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.28-35
    • /
    • 1983
  • The object of this study was to investigate the distribution of Cd fractions in paddy soils in relation to some soil characteristics and to find out the relationships between soil Cd fractions and Cd content in brown rice. Thirty six soils and rice samples were collected from the paddy field adjacent to zinc mining sites at harvest time in 1981. Total Cd content of brown rice samples was analyzed. A sequential extraction procedure was used to fractionate Cd in soils into the designated forms of exchangeable, adsorbed, organically bonded, carbonate, sulfide, and residual Cd. The results obtained were as follows: 1. The distribution of Cd fractions in soil showed a wide difference depending on soil properties. As an average value it was observed that organically bonded Cd amounted 43.7%; residual Cd, 6.5%; and other fractions, 10-15%. 2. With higher soil pH, organically bonded and carbonate Cd fraction tended to be higher but exchangeable fraction lower. Other forms of Cd showed no difference with soil reaction. 3. Organically bonded fraction was positively correlated with soil organic matter content, while others except adsorbed fraction showed an adverse tendency. 4. The relation of fraction distribution to soil C E C was similar to the case of organic matter. 5. Cadmium content in brown rice showed significant possitive correlation with organically bonded Cd content (r = 0.655) and carbonate, Cd content of soil (r = 0.328) but there was no significant correlation with contents of other forms.

  • PDF