• Title/Summary/Keyword: $HCHO-NO_2$ ratio

Search Result 5, Processing Time 0.031 seconds

Characteristic Analysis of Tropospheric Ozone Sensitivity from the Satellite-Based HCHO/NO2 Ratio in South Korea (위성 기반 HCHO/NO2 비율을 통한 국내 대류권 오존 민감도 특성 분석)

  • Jinah Jang;Yun Gon Lee ;Jeong-Ah Yu;Kyoung-Hee Sung;Sang-Min Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.563-576
    • /
    • 2023
  • In this study nitrogen dioxide (NO2), formaldehyde (HCHO) from the Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI), OMI/ Microwave Limb Sounder (MLS) tropospheric column ozone (TCO), and Airkorea ground-based O3 data were analyzed to examine the photochemical reaction relationship between tropospheric ozone and its precursors nitrogen oxides (NOx) and volatile organic compounds (VOCs). As a result of analyzing the trend of long-term changes from 2006 to 2020 using OMI satellite data, TCO showed an increasing trend, NO2 steadily decreased, and HCHO continued to increase in Northeast Asia. In addition, formaldehyde nitrogen dioxide ratio (FNR; HCHO/NO2 ratio), an indicator of ozone sensitivity, is gradually increasing, which means that the VOC-limited regime is decreasing. This study conducted a sensitivity analysis of ozone generation using TROPOMI FNR and ground-based ozone (O3) over the recent years (2019~2022) to identify the possible cause for the continuous increase of ozone in Korea. Similar to the previous studies, VOC-limited and transitional regimes appeared in megacities, and VOC-limited regimes also appeared in areas where major power plants were located. In VOC-limited regimes, in other words, areas where NOx is excessively saturated, the reduction in NOx emissions may have weakened the ozone titration and thus led to the increase of ozone. Therefore, VOC emissions should be reduced in the short term rather than NOx emissions to reduce ozone concentrations under the VOC-limited regime.

Characteristics of indoor air quality in the overground and underground railway stations (지상과 지하역사의 실내공기질 특성과 외기영향 평가)

  • Namgung, Hyeong-Kyu;Song, Ji-Han;Kim, Soo-Yeon;Kim, Hee-Man;Kwon, Soon-Bark
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.17-25
    • /
    • 2016
  • In this study, the air quality of underground and overground railway stations was evaluated focusing on the degree of influence of the outside air quality. The measured components were particulate matter ($PM_{10}$), carbon dioxide ($CO_2$), carbon monoxide (CO), nitrogen dioxide ($NO_2$), formaldehyde (HCHO), ozone ($O_3$), total airborne bacteria (TAB), total volatile organic carbon (TVOC), and Radon (Rn), which are included in the maintenance standards and recommended standards of the Indoor Air Quality Management Act. Also, the indoor/outdoor concentration ratios of $PM_{10}$, $NO_2$, and $O_3$ were calculated to estimate the influence of the outdoor air quality. The concentrations of $PM_{10}$ HCHO, TVOC, $NO_2$, and Rn in the underground stations were found to be higher than those in the overground stations. These results indicate that the (present) generation of contaminants are caused by the indoor source of the underground station. The ozone concentration of the overground stations was higher than that of the underground stations, which indicates that the outdoor ozone concentration influenced that of the overground stations directly. Thus, methods of improving the IAQ should take into consideration the types of contamination.

A Study on the Field Evaluation about the Indoor Air Quality of Schools Newly Built in Changwon (창원지역 신축학교의 실내공기질 현장평가 연구)

  • Yoo, Jong-Hoon;Kang, Eun-Hye;Son, Young-Hwan;Ha, Suk-Yong;Choi, Jeong-Min
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1244-1249
    • /
    • 2006
  • Because students are spending more time in their classroom for learning and study, indoor air quality problems in school classrooms are very important. when the classroom is built for the first time, namely newly built school, the selection of inside finishing material is directly connected with indoor air quality problems especially with HCHO and TVOC. But until now, there is no plenty of study about this. Moreover, there are some concerns about the desks and chairs which are used in classroom will affect the air quality. but almost no study is being made at all Therefore, this study focuses on the field survey and analysis of classroom indoor air quality in newly built schools in Changwon. In this study filed surveys and analysis are conducted as follows. 1) The effect of the material difference in general classroom. 2) The effect of the material and loading ratio difference in special classroom. 3) The effect of the desks and chairs in general classroom.

  • PDF

An Analysis on the Actual Condition of Indoor Air Quality in Rural House (농촌지역 노후주택의 실내공기환경 실태분석 연구)

  • Park, Roun;Cho, Sukyeong;Kim, Sangbum
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.2
    • /
    • pp.9-17
    • /
    • 2020
  • The ratio of the deterioration housing in rural area was 29.6%, but it was 18.3% in urban area based on a 2018 survey. In consideration of the point, this study aims to analyze the actual condition of indoor air quality in rural houses to provide basic data for improving the indoor air environment. It was investigated 15housings of Hongseong-gun, Chungchengnam-do. To investigate the correlation between indoor air quality and housing type, both the field survey of housing type and precision diagnosis of concentration of indoor air pollutants such as HCHO, TVOC, Fine dust(PM-10, PM-2.5), CO2, Radon. The results of this study are as follows. First, according to the average value of each element of rural old housing, the construction year was distributed in 1939~2004, and 12households(80%) living in houses older than 30years have passed for about 46years. As for the housing area, more than 12houses(80%) of 60㎡ or more and 3 houses (20%) of less than 60㎡ were often living in relatively small-scale housing. Second, as a result of measuring indoor air pollutants in rural houses, substances exceeding the standard values were found in HCHO, TVOC, CO2. Third, in the case of Fine dust and Radon, none of such factors were exceeded the standard. Fourth, there was no significant difference in indoor air quality depending on housing type in rural houses. This paper is expected to contribute to the regional development projects and effective implementation of rural policies.

Selective NO2 Sensors Using MoS2-MoO2 Composite Yolk-shell Spheres

  • Jeong, Seong Yong;Choi, Seung Ho;Yoon, Ji-Wook;Won, Jong Min;Kang, Yun Chan;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.151-154
    • /
    • 2015
  • The gas sensing characteristic of $MoS_2-MoO_2$ composite yolk-shell spheres were investigated. $MoO_3$-carbon composite spheres were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Mo-source and sucrose in nitrogen, which were converted into $MoO_3$ yolk-shell spheres by heat treatment at $400^{\circ}C$ in air. Subsequently, $MoS_2-MoO_2$ composite yolk-shell spheres were prepared by the partial sulfidation of $MoO_3$. The $MoS_2-MoO_2$ composite yolk-shell spheres showed relatively low and irreversible gas sensing characteristics at < $200^{\circ}C$. In contrast, the sensor showed high and reversible response (S=resistance ratio) to 5 ppm $NO_2$ (S=14.8) at $250^{\circ}C$ with low cross-responses (S=1.17-2.13) to other interference gases such as ethanol, CO, xylene, toluene, trimethylamine, $NH_3$, $H_2$, and HCHO. The $MoS_2-MoO_2$ composite yolk-shell spheres can be used as reliable sensors to detect $NO_2$ in a selective manner.