• Title/Summary/Keyword: $Ga_2O_3$ Substrate

Search Result 158, Processing Time 0.027 seconds

Fabrication of a Depletion mode n-channel GaAs MOSFET using $Al_2O_3$ as a gate insulator ($Al_2O_3$ 절연막을 게이트 절연막으로 이용한 공핍형 n-채널 GaAs MOSFET의 제조)

  • Jun, Bon-Keun;Lee, Suk-Hyun;Lee, Jung-Hee;Lee, Yong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • In this paper, we present n-channel GaAs MOSFET having $Al_2O_3$ as gate in insulator fabricated on a semi-insulating GaAs substrate. 1 ${\mu}$m thick undoped GaAs buffer layer, 1500 ${\AA}$ thick n-type GaAs, undoped 500 ${\AA}$ thick AlAs layer, and 50 ${\AA}$ GaAs caplayer were subsequently grown by molecular beam epitaxy(MBE) on (100) oriented semi-insulating GaAs substrate oxidized. When it was wet oxidized, AlAs layer was fully converted $Al_2O_3$. The I-V, $g_m$, breakdown charateristics of the fabricated GaAs MOSFET showed that wet thermal oxidation of AlAs/GaAs epilayer/S${\cdot}$I GaAs was suitable in realizing depletion mode GaAs MOSFET.

  • PDF

Structural and Electrical Properties of Ga-doped ZnO-SnO2 Films (Ga이 첨가된 ZnO-SnO2막의 구조적 및 전기적 특성)

  • Park, Ki-Cheol;Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.641-646
    • /
    • 2011
  • Ga-doped ZnO-$SnO_2$ (ZSGO) films were deposited by rf magnetron sputtering and their structural and electrical properties were investigated. In order to fabricate the target for sputtering, the mixture of ZnO, $SnO_2$ (1:1 weight ratio) and $Ga_2O_3$ (3.0 wt%) powder was calcined at $800^{\circ}C$ for 1 h. The substrate temperature was varied from room temperature to $300^{\circ}C$. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The optical transmittances of the films were measured and the optical energy band gaps were obtained from the absorption coefficients. The resistivity variation with substrate temperature was measured. Auger electron spectroscopy was employed to find the atomic ratio of Zn, Sn, Ga and O in the film deposited at room temperature. ZSGO films exhibited the optical transmittance in the visible region of more than 80% and resistivity higher than $10\;{\Omega}cm$.

Photoluminescence Behaviors of the ZnGa2O4 Phosphor Thin Films on Al2O3 substrates as a Function of Oxygen Pressures (Al2O3 기판위에 증착한 ZnGa2O4 형광체 박막의 산소분압에 따른 형광특성)

  • Yi, Soung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2002
  • $ZnGa_2O_4$ thin film phosphors have been deposited using a pulsed laser deposition technique on $Al_2O_3$(0001) substrates at a substrate temperature of $550^{\circ}C$ with various oxygen pressures 100, 200 and 300 mTorr. The films grown under different growth oxygen pressures have been characterized using microstructural and luminescent measurements. The different photoluminescence (PL) characteristics with the increase in oxygen pressures may result from the change of the crystallinity and the composition ratio of Zn and Ga in the films. The luminescent spectra show a broad band extending from 300 to 600 nm peaking at 460 nm. The PL brightness data obtained from the $ZnGa_2O_4$ films grown under optimized conditions have indicated that the sapphire is a promising substrate for the growth of high quality $ZnGa_2O_4$ thin film phosphor.

Changes in Electrical and Optical Properties and Chemical States of the Amorphous In-Ga-Zn-O Thin Films Depending on Growth Temperature

  • Yoo, Han-Byeol;Thakur, Anup;Kang, Se-Jun;Baik, Jae-Yoon;Lee, Ik-Jae;Park, Jae-Hun;Kim, Ki-Jeong;Kim, Bong-Soo;Shin, Hyun-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.346-346
    • /
    • 2012
  • We investigated electrical and optical properties and chemical states of amorphous In-Ga-Zn-O (a-IGZO) thin films deposited at different substrate temperatures (from room temperature to $300^{\circ}C$). a-IGZO thin films were fabricated by radio frequency magnetron sputtering using $In_2O_3$ : $Ga_2O_3$ : ZnO = 1 : 1 : 1 target, and their electrical and optical properties and chemical states were investigated by Hall-measurement, UV-visible spectroscopy and x-ray photoelectron spectroscopy (XPS), respectively. The data showed that as substrate temperature increased, carrier concentration increased, but mobility, conductivity, transmittance in the shorter wavelength region (>350 nm), and the Tauc-plot-estimated optical bandgap decreased. XPS data indicated that the intensity of In 3d peak compared to Ga 3d peak increased but the intensity of Zn 3d peak compared to Ga 3d decreased, and that, from the deconvoluted O 1s peak, defects or oxygen vacancies and non-quaternary contents increased as the temperature increased. The relative intensity changes of the In, Zn, and O 1s sub-component are suggested to explain the changes in electrical and optical properties.

  • PDF

Electrical and Optical Properties of Ga-doped SnO2 Thin Films Via Pulsed Laser Deposition

  • Sung, Chang-Hoon;Kim, Geun-Woo;Seo, Yong-Jun;Heo, Si-Nae;Huh, Seok-Hwan;Chang, Ji-Ho;Koo, Bon-Heun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.144-148
    • /
    • 2011
  • $Ga_2O_3$ doped $SnO_2$ thin films were grown by using pulsed laser deposition (PLD) technique on glass substrate. The optical and electrical properties of these films were investigated for different doping concentrations, oxygen partial pressures, substrate temperatures, and film thickness. The films were deposited at different substrate temperatures (room temperature to $600^{\circ}C$). The best opto-electrical properties is shown by the film deposited at substrate temperature of $300^{\circ}C$ with oxygen partial pressure of 80 m Torr and the gallium concentration of 2 wt%. The as obtained lowest resistivity is $9.57{\times}10^{-3}\;{\Omega}cm$ with the average transmission of 80% in the visible region and an optical band gap (indirect allowed) of 4.26 eV.

Technical Trends of Semiconductors for Harsh Environments (극한 환경용 반도체 기술 동향)

  • Chang, W.;Mun, J.K.;Lee, H.S.;Lim, J.W.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.12-23
    • /
    • 2018
  • In this paper, we review the technical trends of diamond and gallium oxide ($Ga_2O_3$) semiconductor technologies among ultra-wide bandgap semiconductor technologies for harsh environments. Diamond exhibits some of the most extreme physical properties such as a wide bandgap, high breakdown field, high electron mobility, and high thermal conductivity, yet its practical use in harsh environments has been limited owing to its scarcity, expense, and small-sized substrate. In addition, the difficulty of n-type doping through ion implantation into diamond is an obstacle to the normally-off operation of transistors. $Ga_2O_3$ also has material properties such as a wide bandgap, high breakdown field, and high working temperature superior to that of silicon, gallium arsenide, gallium nitride, silicon carbide, and so on. In addition, $Ga_2O_3$ bulk crystal growth has developed dramatically. Although the bulk growth is still relatively immature, a 2-inch substrate can already be purchased, whereas 4- and 6-inch substrates are currently under development. Owing to the rapid development of $Ga_2O_3$ bulk and epitaxy growth, device results have quickly followed. We look briefly into diamond and $Ga_2O_3$ semiconductor devices and epitaxy results that can be applied to harsh environments.

Properties of Ga-doped ZnO transparent conducting oxide fabricated on PET substrate by RF magnetron sputtering (RF 마그네트론 스퍼터링 공정으로 PET 기판 위에 제조한 Ga-doped ZnO 투명전도막의 특성)

  • Kim, Jeong-Yeon;Kim, Byeong-Guk;Lee, Yong-Koo;Kim, Jae-Hwa;Woo, Duck-Hyun;Kweon, Soon-Yong;Lim, Dong-Gun;Park, Jae-Hwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films on PET substrate were studied. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PET substrate and the GZO film, $O_2$ plasma pretreatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the crystallinity increased and the contact angle decreased significantly. When the RF power was 100 W and the treatment time was 600 sec in $O_2$ plasma pretreatment process, the resistivity of GZO films on the PET substrate was $1.90{\times}10^{-3}{\Omega}-cm$.

Growth of Large GaN Substrate with Hydride Vapor Phase Epitaxy (HVPE법에 의해 대구경 GaN 기판 성장)

  • Kim, Chong-Don;Ko, Jung-Eun;Jo, Chul-Soo;Kim, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.99-99
    • /
    • 2008
  • To grow the large diameter GaN with high structure and optical quality has been obtained by hydride vapor phase epitaxy(HVPE) method. In addition to the nitridation of $Al_2O_3$ substrate, we also developed a "step-growth process" to reduce or to eliminate the bowing of the GaN substrate caused by thermal mismatch during cool down after growth. The as-grown 380um thickness and 75mm diameter GaN layer was separated from the sapphire substrate by laser-induced lift-off process at $600^{\circ}C$. A problem with the free-standing wafer is the typically large bowing of such a wafer, due to the built in the defect concentration near GaN-sapphire interface. A polished G-surface of the GaN substrate were characterized by room temperature Double crystal X-ray diffraction (DCXRD), photoluminescence(PL) measurement, giving rise to the full-width at half maximum(FWHM) of the rocking curve of about 107 arcsec and dislocation density of $6.2\times10^6/cm^2$.

  • PDF

Properties of Freestanding GaN Prepared by HVPE Using a Sapphire as Substrate (사파이어를 기판으로 이용하여 HVPE법으로 제작한 Freestanding GaN의 특성)

  • Lee, Yeong-Ju;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.591-595
    • /
    • 1998
  • In this work, the freestanding GaN single crystalline substrates without cracks were grown by hydride vapor phase epitaxy (HVPE) and its some properties were investigated. The GaN substrate, having a current maximum size of 350 $\mu\textrm{m}$-thickness and 100$\textrm{mm}^2$ area, were obtained by HVPE growth of thick film GaN on sapphire substrate and subsequent mechanical removal of the sapphire substrate. A lattice constant of $C_o$= 5.18486 $\AA$ and a FWHM of DCXRD was 650 arcsec for the single crystalline GaN substrate. The low temperature PL spectrum consist of three excitonic emission and a deep D- A pair recombination at 1.8eV. The Raman E, (high) mode frequency was 567$cm^{-1}$ which was the same as that of strain free bulk single crystals. The Hall mobility and carrier concentration was 283$cm^3$<\ulcornerTEX>/ V.sand 1.1$\times$$10^{18}cm^{-3}$, respectively.

  • PDF