• 제목/요약/키워드: $Fr{\acute{e}}chet$ functional equation

검색결과 2건 처리시간 0.015초

A GENERALIZED ADDITIVE-QUARTIC FUNCTIONAL EQUATION AND ITS STABILITY

  • HENGKRAWIT, CHARINTHIP;THANYACHAROEN, ANURK
    • 대한수학회보
    • /
    • 제52권6호
    • /
    • pp.1759-1776
    • /
    • 2015
  • We determine the general solution of the generalized additive-quartic functional equation f(x + 3y) + f(x - 3y) + f(x + 2y) + f(x - 2y) + 22f(x) - 13 [f(x + y) + f(x - y)] + 24f(y) - 12f(2y) = 0 without assuming any regularity conditions on the unknown function f : ${\mathbb{R}}{\rightarrow}{\mathbb{R}}$ and its stability is investigated.

Ulam Stability Generalizations of 4th- Order Ternary Derivations Associated to a Jmrassias Quartic Functional Equation on Fréchet Algebras

  • Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • 제53권2호
    • /
    • pp.233-245
    • /
    • 2013
  • Let $\mathcal{A}$ be a Banach ternary algebra over a scalar field R or C and $\mathcal{X}$ be a ternary Banach $\mathcal{A}$-module. A quartic mapping $D\;:\;(\mathcal{A},[\;]_{\mathcal{A}}){\rightarrow}(\mathcal{X},[\;]_{\mathcal{X}})$ is called a $4^{th}$- order ternary derivation if $D([x,y,z])=[D(x),y^4,z^4]+[x^4,D(y),z^4]+[x^4,y^4,D(z)]$ for all $x,y,z{\in}\mathcal{A}$. In this paper, we prove Ulam stability generalizations of $4^{th}$- order ternary derivations associated to the following JMRassias quartic functional equation on fr$\acute{e}$che algebras: $$f(kx+y)+f(kx-y)=k^2[f(x+y)+f(x-y)]+2k^2(k^2-1)f(x)-2(k^2-1)f(y)$$.