1 |
A. Ebadian, N. Ghobadipour, M. Banand Savadkouhi and M. Eshaghi Gordji, Stability of a mixed type cubic and quartic functional equation in non-Archimedean -fuzzy normed spaces, Thai Journal of Mathematic,9(2)(2011), 225-241.
|
2 |
M. Eshaghi Gordgi, N. Ghobadipour, Approximately quartic homomorphisms on Banach algebras, Word applied sciences Journal, (2010), Article in press.
|
3 |
Ghobadipour, N.,Lie * - double derivations on Lie C* -algebras, Int. J. Nonlinear Anal. Appl. 1 (2010) No.2, 1-12.
|
4 |
G. Isac, Th. M. Rassias, On the Hyers-Ulam stability of -additive mappings, J. Approx. Theory, 72(1993), 131-137.
DOI
ScienceOn
|
5 |
Th. M. Rassias, Solution of a problem of Ulam, Journal of Approximation Theory, 57(3)(1989), 268-273.
DOI
|
6 |
R. Saadati, Y. J. Cho and J. Vahidi, The stability of the quartic functional equation in various spaces, Computers and Mathematics with Applications, 60(2010), 1994-2002.
DOI
ScienceOn
|
7 |
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27(1984), 76-86.
DOI
ScienceOn
|
8 |
M. Bavand Savadkouhi, M. Eshaghi Gordji, J. M. Rassias and N. Ghobadipour, Approximate ternary Jordan derivations on Banac ternary algebras, J. Math. Phys., 50(2009), 9 pages.
|
9 |
N. Bazunova, A. Borowiec and R. Kerner, Universal differential calculus on ternary algebras, Lett. Math. Phys., 67(2004).
|
10 |
A. Cayley, On the 34 concomitants of the ternary cubic, Amer. J. Math., 4(1881), 1-15.
DOI
ScienceOn
|
11 |
H. Chu, S. Koo and J. Park, Partial stabilities and partial derivations of n-variable functions, Nonlinear Anal.-TMA (to appear).
|
12 |
H. Zettl, A characterization of ternary rings of operators, Advances in Mathematics, 48(1983), 117-?43.
DOI
|
13 |
G. L. Sewell, Quantum Mechanics and its Emergent Macrophysics, Princeton Univ. Press, Princeton, NJ, 2002. MR1919619 (2004b:82001).
|
14 |
F. Skof, Propriet?locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano., 53(1983), 113-?29.
DOI
ScienceOn
|
15 |
S. M. Ulam, Problems in modern mathematics, Chapter VI, science ed., Wiley, New York, (1940).
|
16 |
W. G. Park, J. H. Bae, On a bi-quadratic functional equation and its stability, Non-linear Analysis, 62(2005), 643-654.
DOI
ScienceOn
|
17 |
M. S. Moslehian, Almost derivations on C*-ternary rings, Bull. Belg. Math. Soc.-Simon Stevin, 14(2007), 135-142.
|
18 |
M. S. Moslehian, Ternary derivations, stability and physical aspects, Acta Appl. Math., 100(2)(2008), 187-199.
DOI
|
19 |
C. Park, M. Eshaghi Gordji, Comment on Approximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al., J. Math. Phys., 50(2009), ], J. Math. Phys., 51(2010), 044102.
|
20 |
Th. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematiki, 34(1999), 243-252.
|
21 |
Th. M. Rassias, On a new approximation of approximately linear mappings by linear mappings, Discussiones Mathematicae, 7(1985), 193-196.
|
22 |
Th. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese Journal of Mathematics, 20(2)(1992), 185-190.
|
23 |
Th. M. Rassias, On approximation of approximately linear mappings by linear mappings , Bull. Sci. Math., 2(4)(1984), 445-446.
|
24 |
Th. M. Rassias, On approximation of approximately linear mappings by linear mappings, Journal of Functional Analysis, 46(1)(1982), 126-130.
DOI
|
25 |
Th. M. Rassias, J. Tabor, What is left of Hyers-Ulam stability?, J. Natur. Geom, 1(1992), 65-69.
|
26 |
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
DOI
ScienceOn
|
27 |
Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ.Babes-Bolyai Math., 43(1998), 89-124.
|
28 |
Th. M. Rassias, The problem of S.M.Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), 352-378.
DOI
ScienceOn
|
29 |
M. Eshaghi Gordji, N. Ghobadipour, Stability of (, , )-derivations on Lie C*-algebras, International Journal of Geometric Methods in Modern Physics, 7(2010), 1093-1102.
DOI
ScienceOn
|
30 |
M. Eshaghi Gordji, J. M. Rassias and N. Ghobadipour, Generalized Hyers-Ulam stability of the generalized (n, k)-derivations, Abs. Appl. Anal., 2009, Article ID 437931, 8 pages.
|
31 |
Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci. 14(1991), 431-434.
DOI
ScienceOn
|
32 |
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
DOI
ScienceOn
|
33 |
P. Gavruta, An answer to a question of Th.M. Rassias and J. Tabor on mixed stability of mappings, Bul. Stiint. Univ. Politeh. Timis. Ser. Mat. Fiz., 4(56)(1997), 1-6.
|
34 |
P. Gavruta, On the Hyers-Ulam-Rassias stability of mappings, in: Recent Progress in Inequalities, 430, Kluwer, 1998, 465-469.
|
35 |
N. Ghobadipour, A. Ebadian, Th. M. Rassias and M. Eshaghi, A perturbation of double derivations on Banach algebras, Communications in Mathematical Analysis, 11(2011), 51-60.
|
36 |
R. Kerner, Ternary algebraic structures and their applications in physics, Univ. P. M. Curie preprint, Paris (2000), http://arxiv.org/list/math-ph/0011.
|
37 |
D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhaer, Basel. (1998).
|
38 |
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27(1941), 222-224.
DOI
ScienceOn
|
39 |
M. Kapranov, I. M. Gelfand and A. Zelevinskii, Discrimininants, Resultants and Multidimensional Determinants, Birkhauser, Berlin, 1994.
|
40 |
R. Kerner, The cubic chessboard, Geometry and physics, Class. Quantum Grav., 14(1997), A203.
DOI
ScienceOn
|
41 |
J. K. Chung, P. K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math. Soc., 40(2003), 565-?76.
과학기술학회마을
DOI
ScienceOn
|
42 |
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62(1992), 59-64.
DOI
ScienceOn
|
43 |
A. Ebadian, A. Najati and M. Eshaghi Gordji, On approximate additive-quartic and quadratic-cubic functional equations in two variables on abelian groups, Results Math., 58(2010), 39-53.
DOI
ScienceOn
|
44 |
A. Ebadian, N. Ghobadipour and M. Eshaghi Gordji, A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C*-ternary algebras, Journal of mathematical physics, 51(2010), 103508.
DOI
ScienceOn
|
45 |
A. Ebadian, N. Ghobadipour, Th. M. Rassias and M. Eshaghi Gordji, Functional Inequalities Associated with Cauchy Additive Functional Equation in Non-Archimedean Spaces, To appear in Discrete Dynamics in Nature and Society.
|
46 |
J. Aczel, J. Dhombres, Functional equations in several variables, Cambridge Univ. Press., 1989.
|
47 |
A. Ebadian, N. Ghobadipour, Th. M. Rassias and I. Nikoufar, Stability of generalized derivations on Hilbert C* - modules associated to a pexiderized Cuachy-Jensen type functional equation, To appear in Acta Mathematica Scintia.
|
48 |
M. Eshaghi Gordji, A. Ebadian and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abs. Appl. Anal., 2008, Article ID 801904, 17 pages.
|
49 |
V. Abramov, R. Kerner and B. Le Roy, Hypersymmetry a Z3 graded generalization of supersymmetry, J. Math. Phys., 38(1997), 1650.
DOI
ScienceOn
|
50 |
M. Eshaghi Gordji, Stability of an additive-quadratic functional equation of two variables in Fpaces, Journal of Nonlinear Sciences and Applications, 2(2009), 251-259.
DOI
|
51 |
M. Eshaghi Gordji, N. Ghobadipour, Nearly generalized Jordan derivations, Math. Slovaca, 61(1)(2011), 1-8.
DOI
ScienceOn
|