• Title/Summary/Keyword: $Fe^{2+}

Search Result 11,683, Processing Time 0.04 seconds

The photochemical reactions of iron species in rain and snow in Higashi-Hiroshima, Japan

  • Kim, Do Hoon;Takeda, Kazuhiko;Sakugawa, Hiroshi;Lee, Jin Sik
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.466-474
    • /
    • 2003
  • This paper describes the concentrations of total dissolved iron (tFe) and $Fe^{2+}$ in rainwater and snow, the relationship of Fe species with other metals and ions in bulk rainwater, and the $Fe^{2+}$ generation mechanism in aqueous samples in rainwater of time series collection. Volume weight mean concentrations of tFe and $Fe^{2+}$ were 3.22 and $1.25{\mu}gL^{-1}$ in bulk rainwater, and 50.1 and $43.5{\mu}gL^{-1}$ in snow, respectively. $Fe^{2+}$ was significant fraction to the tFe, accounted for 3.25-93.4% of the tFe in rainwater and 87% in snow. We also investigated temporal variations of tFe, $Fe^{2+}$, other metals and ions in rainwater of time series collection during rain event. Although the concentration range of tFe was different from those of other species, a decreasing trend of tFe from the beginning of the rain event was similar with other species. However, though $Fe^{2+}$ did not show such a decreasing trend, $Fe^{2+}$/tFe was in good correlation with solar radiation. From the results of multiple linear regression analysis and thermodynamic calculations (Mineql+), $Fe^{2+}$ in our samples may be generated from photochemical reduction of $Fe^{3+}$ species (such as $Fe(OH)^{2+}$,$Fe(OH)^{2+}$ and Fe-oxalate) at daytime.

Magnetic Properties and Thermomagnetic Analysis of Cast and Hot-Pressed Pr, Nd-Fe-B Magnets (주조 및 열간압축된 Pr, Nd-Fe-B계 영구자석의 열자기 분석과 자기적 특성)

  • 김동엽;이동구;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • Minor phases in cast and hot-pressed R(R=Pr, Nd)-Fe-B magnet were investigated through thermomagnetic analysis. The relationship between minor phases and coercivities of R-Fe-B magnets was studied. ${\alpha}-Fe$ and $Nd_{2}Fe_{17}$ were precipitated in as-cast Pr-Fe-B and Nd-Fe-B alloys respectively. These phases were considered to deteriorate the magnetic properties of R-Fe-B magnets. During the heat treatment, ${\alpha}-Fe$ and $Nd_{2}Fe_{17}$ were annihilated and the magnetic properties of cast R-Fe-B magnet were improved. Hot-pressed Nd-Fe-B magnet showed better thermal stability than sintered magnet.

  • PDF

Formation and Color of the Spinel Solid-Solution in $ZnO-Fe_2O_3-TiO_2-SnO_2$ System ($ZnO-Fe_2O_3-TiO_2-SnO_2$계 Spinel 안료 고용체의 생성과 발색)

  • 박철원;이진성;이웅재
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.213-219
    • /
    • 1994
  • The formations of spinel and colors of ZnO-Fe2O3-TiO2-SnO2 system have been researched on the basis of ZnO-Fe2O3 system. Specimens were prepared by substituting Fe3+, with Ti4+ or Sn4+ when mole ratios between Fe3+ and Ti4+ or between Fe3+ and Sn4+ were 0.2 mole. The reflectance measurement and X-ray diffraction analysis of the formation of spinel and the colors of there specimens were carried out. ZnO-Fe2O3 system in which Fe2O3 was substituted with SnO2 and TiO2 was formed the spinel structure of 2ZnO.TiO2, 2ZnO.SnO2, ZnO.Fe2O3. The stable stains which were colored with yellow and brown could be manufactured.

  • PDF

Synthesis of Fe-Doped TiO2/α-Fe2O3 Core-Shell Nanowires Using Co-Electrospinning and Their Magnetic Property (복합 전기방사법을 이용한 Fe-doped TiO2/α-Fe2O3 이중구조 나노와이어의 합성 및 자성 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.423-428
    • /
    • 2014
  • We synthesized Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell nanowires(NWs) by means of a co-electrospinning method and demonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of the samples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained after calcination at $500^{\circ}C$ exhibited core/shell NWs consisting of $TiO_2$ in the core region and ${\alpha}-Fe_2O_3$ in the shell region. In addition, the XPS results confirmed the formation of Fe-doped $TiO_2$ by the doping effect of $Fe^{3+}$ ions into the $TiO_2$ lattice, which can affect the ferromagnetic properties in the core region. For comparison, pure ${\alpha}-Fe_2O_3$ NWs were also fabricated using an electrospinning method. With regard to the magnetic properties, the Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell NWs exhibited improved saturation magnetization(Ms) of approximately ~2.96 emu/g, which is approximately 6.1 times larger than that of pure ${\alpha}-Fe_2O_3$ NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the $TiO_2$ lattice, the size effect of the $Fe_2O3_$ nanoparticles, and the structural effect of the core-shell nanostructures.

Observations of Exchange Coupling in Nd2Fe14B/Fe/Nd2Fe14B Sandwich Structures and Their Magnetic Properties

  • Yang, Choong-Jin;Kim, Sang-Won
    • Journal of Magnetics
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 1999
  • Sandwich structures of$ Nd_2Fe_{14}B/Fe/Nd_2Fe_{14}B $magnetic films have been grown by a KrF excimer laser (λ=248 nm) ablation technique. Magnetic properties were characterized by varying the thickness of hard ($Nd_2Fe_{14}B$) and soft (Fe) magnetic films and the volume fraction as well. In the (x)nm[NdFeB]/(y)nm[Fe]/(x)nm[NdFeB]/(100) Si structure the thickness (x) was varied from 3.6 to 54 nm, and (y) from 15 to 112 nm. At (y) = 15~20 nm where the volume fraction of Fe corresponded to 61~75%, the sandwich structure exhibited an enhanced Mr/Ms and iHc as well from the result of the exchange coupling between the magnetic layers. Experimentally calculated exchange constant$ (A_s) of A_s = 2.5{\times}10^{-10} J/m$ was estimated using the intrinsic coercivity (iHc) of 1.2 kOe at 5 K for the sandwich magnetic trilayers.

  • PDF

Computer Simulation of Enhancement of Coerciviy in Nd-Fe-B/(Nd,Dy)-Fe-B Composite Magnets

  • Kawasaki, Kohei;Yanai, Takeshi;Nakano, Masaki;Fukunaga, Hirotoshi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • The coercivity $H_c$ of $Nd_2Fe_{14}B$ magnets and $Nd_2Fe_{14}B/(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ composite magnets were calculated by computer simulation based on the micromagnetic theory under assumptions that $Nd_2Fe_{14}B$ and $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains have magnetically deteriorated layers on their surfaces and diffusion of Dy from $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains to $Nd_2Fe_{14}B$ ones through the contacting boundaries recovers the magnetic anisotropy of the deteriorated layers of $Nd_2Fe_{14}B$ grains. $H_c$ of $Nd_2Fe_{14}B/(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ composite magnets increased by the diffusion of Dy from $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains to $Nd_2Fe_{14}B$ ones and the resultant recovery of the anisotropy field of deteriorated layers of $Nd_2Fe_{14}B$ grains. The $H_c$ vs fraction of $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains curve were convex for the magnets with the degree of alignment between 0.94 and 0.99, which suggests that the above composite magnets have larger $H_c$ values than the alloy-magnets with the same Dy content, and that we can save the consumption of Dy by using these composite magnets.

Highly sensitive xylene sensors using Fe2O3-ZnFe2O4 composite spheres

  • Chan, Jin Fang;Jeon, Jae Kyoung;Moon, Young Kook;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.191-195
    • /
    • 2021
  • Pure ZnFe2O4 and Fe2O3-ZnFe2O4 hetero-composite spheres were prepared by ultrasonic spray pyrolysis of a solution containing Zn- and Fe-nitrates. Additionally, the sensing characteristics of these spheres in the presence of 5 ppm ethanol, benzene, p-xylene, toluene, and CO (within the temperature range of 275-350 ℃) were investigated. The Fe2O3-ZnFe2O4 hetero-composite sensor with a cation ratio of [Zn]:[Fe]=1:3 exhibited a high response (resistance ratio = 140.2) and selectivity (response to p-xylene/response to ethanol = 3.4) to 5 ppm p-xylene at 300 ℃, whereas the pure ZnFe2O4 sensor showed a comparatively lower gas response and selectivity. The reasons for the superior response and selectivity to p-xylene in Fe2O3-ZnFe2O4 hetero-composite sensor were discussed in relation to the electronic sensitization due to charge transfer at Fe2O3-ZnFe2O4 interface and Fe2O3-induced catalytic promotion of gas sensing reaction. The sensor can be used to monitor harmful volatile organic compounds and indoor air pollutants.

CORONAL TEMPERATURE, DENSITY AND NONTHERMAL VELOCITY DERIVED FROM SERTS EUV SPECTRA

  • MOON YONG-JAE;YUN HONG-SIK;DAVILA J. M.;PARK YOUNG DEUK
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.207-215
    • /
    • 1996
  • To derive coronal temperature, electron density and nonthermal velocity, we have analyzed high resolution spectra (e.g., Fe XII 338.3, Fe XII 352.1, Fe XIV 334.2, Fe XIV 353.8, Fe XV 284.2, Fe XV 321.8, Fe XV 327.0, Fe XVI 335.4, and Fe XVI 360.8) taken from AR 6615 by SERTS (Solar Extreme Ultraviolet Rocket Telescope and Spectrograph). Important findings emerging from the present study are as follows: (1) Temperature estimated from Fe XVI 335.4 and Fe XIV, 334.2 is $\~2.4\times10^6 K$ and no systematic difference in temperature is found between the active region and its adjacent quiet region; (2) Mean electron density estimated from Fe XV is $\~3\times10^9 cm^{-3}\;and\;\~10^{10} cm^{-3}$ from Fe XII and Fe XIV; (3) Mean density of the active region is found to be higher than that of the quiet region by a factor of 2; (4) Nonthermal velocity estimated from Fe XV and Fe XVI is $20\times25 km\;s^{-l}$ which decreases with increasing ionization temperatures. This supports the notion that the nonthermal velocity declines outwards above the transition region.

  • PDF

Study on the Enzyme of Basidiomycetes(I) -The Effects of Iron Ions on the Light-Induced Mitochondrial $F_0F_1-ATPase$ of Lentinus edodes- (담자균류의 효소에 관한 연구(I) -표고버섯 중의 광감응성 Mitochondrial $F_0F_1-ATPase$의 철이온 효과-)

  • Min, Tae-jin;Lee, Mi-Ae;Bae, Kang-Gyu
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.165-171
    • /
    • 1993
  • The effects of the iron ions for the light-induced mitochondrial $F_0F_1-ATPase$ of Lentinus edodes was studied. The enzyme activity was stimulated up to 202% by 0.1 mM $Fe^{2-}$ ion, but was inhibited by $Fe^{3+}\;and\;Mg^{2+}$. In the presence of 0.5 mM $Mg^{2+}$, the activity also increased 32% by 0.1 mM $Fe^{2+}$ ion, and decreased to a similar extent by $Fe^{3+}$ ion than by only $Fe^{3+}$ ion. Also, the activity was inhibited 53% by 5.0 mM $Fe^{2-}$ ion in the presence of 0.5 mM $Mg^{2+}$ ion and various concentration of $Fe^{3+}$ ion(mM). These results showed that $Fe^{2+}$ strongly stimulated the enzyme activity and its role for the enzyme was independent of $Mg^{2+}$ ion, but was dependent of $Fe^{3+}$ ion. From inactivation of the enzyme by addition of metal chelating agent, EDTA, it is suggested that the enzyme is to be metalloenzyme. The optimal pH and temperature of the enzyme in the presence of 0.1 mM $Fe^{2+}$ was 7.6 and $63^{\circ}C$, respectively.

  • PDF

Study of Magnetic Property of Fe-N Nanoparticle Using Mössbauer Spectroscopy (뫼스바우어 분광기법을 이용한 Fe-N 나노입자의 자기특성연구)

  • Oh, Sei-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2007
  • Three nano-sized Fe-N particle samples synthesized by Chemical Vapor Condensation (CVC) were analyzed using $M\"{o}ssbauer$ spectroscopy, XRD and BET. The synthesized nanoparticles consisted of ${\epsilon}-Fe_{2.12}N,\;{\gamma}'-Fe_4N,\;{\alpha}-Fe\;and\;{\gamma}-Fe.\;{\gamma}'-Fe_4N$ was mainly formed at the low decomposition temperature. With increasing decomposition temperature, the phase was changed to ${\gamma}-Fe$ via ${\epsilon}-Fe_{2.12}N$. For synthesizing Fe-N phases, this study implies that the low decomposition temperature is better than high temperature during Chemical Vapor Condensation.