Observations of Exchange Coupling in Nd2Fe14B/Fe/Nd2Fe14B Sandwich Structures and Their Magnetic Properties

  • Yang, Choong-Jin (Eletromagnetic Materials Lab., Research Institute of Industrial Science & Technology (RIST)) ;
  • Kim, Sang-Won (Eletromagnetic Materials Lab., Research Institute of Industrial Science & Technology (RIST))
  • Published : 1999.06.01

Abstract

Sandwich structures of$ Nd_2Fe_{14}B/Fe/Nd_2Fe_{14}B $magnetic films have been grown by a KrF excimer laser (λ=248 nm) ablation technique. Magnetic properties were characterized by varying the thickness of hard ($Nd_2Fe_{14}B$) and soft (Fe) magnetic films and the volume fraction as well. In the (x)nm[NdFeB]/(y)nm[Fe]/(x)nm[NdFeB]/(100) Si structure the thickness (x) was varied from 3.6 to 54 nm, and (y) from 15 to 112 nm. At (y) = 15~20 nm where the volume fraction of Fe corresponded to 61~75%, the sandwich structure exhibited an enhanced Mr/Ms and iHc as well from the result of the exchange coupling between the magnetic layers. Experimentally calculated exchange constant$ (A_s) of A_s = 2.5{\times}10^{-10} J/m$ was estimated using the intrinsic coercivity (iHc) of 1.2 kOe at 5 K for the sandwich magnetic trilayers.

Keywords

References

  1. Microw. Opt. Technology Lett v.2 D. D. Stancil
  2. IEEE Photonic Technol. Lett. v.8 M. Levy;R. M. Osgodd;F. J. Cadieu;R. Wolfe
  3. J. Appl. Phys. v.70 S. Yamashida;J. Yamasaki;N. Iwabuchi
  4. J. Magn. Magn. Mater. v.148 H. Lemke;T. Lang;C. Heiden
  5. J. Magn. Magn. Mater. v.54;55;56;57 F. J. Cadieu;T. D. Cheung;L. Wickramasekara
  6. J. Appl. Phys. v.61 F. J. Cadieu
  7. IEEE Trans. Magn. v.MAG-30 Y. Okumura;H.Fusimori;O.Suzuki;H.Moria
  8. IEEE Trans, Magn. v.MAG-30 Y. Okumura;H. Fusimori;O. Suzuki;H. Moria
  9. v.127 A. Kapitanov;N. V. Kornilov;V. Yu. Tsvetkov
  10. J. Magn. Magn. Mater. v.80 R. Coehoorn;D. B. De Mooji;C. De Waard
  11. J. Magn. Magn. Mater. v.166 no.2 C. J. Yang;E. B. Park
  12. J. Magn. Magn. Mater v.168 C. J. Yang;E. B. Park
  13. J. Magn. Magn. Mater. v.186 Youhui Gao;C. J. Yang;E. B. Park
  14. IEEE Trans, Mag. v.MAG-27 E. F. Kneller;R. Hawig
  15. Phys. Rev. v.B49 T. Schrefl;J. Fidler;H. Kronmuller
  16. IEEE Trans. Mag. v.MAG-29 no.6 R. Skomski;J. M. D. Coey
  17. J. Appl. Phys. v.81 no.8 D. J. Keavney;E. E. Fullerton;S. D. Bader
  18. J. Magn. Magn. Mater. v.163 no.32 S. Parhofer;G. Gieres;J. Wecker;L. Schultz
  19. J. Appl. Phys. v.83 S. Parhofer;C. Kuhrt;J. Wecker;L. Schultz
  20. J. Magn. Magn. Mater. v.177;178;179;180;181 T. Shima;A. Kamegawa;H. Fujimori
  21. J. Appl. Phys. v.83 no.11 C. J. Yang;S. W. Kim
  22. J. Magn. Magn. Mater. v.188 C. J. Yang;S. W. Kim
  23. J. Appl. Phys. v.83 no.11 J. Kuma;N. Kitajima;H. Fukunaga
  24. J. Magn. Magn. Mater. v.161 M. Shindo;M. Ishizone;H. Kato;A. Sakuma