• 제목/요약/키워드: $Fe^{2+}$ ion concentration

검색결과 223건 처리시간 0.032초

영가철(Fe$^0$)과 UV를 이용한 1,4-dioxane 분해 반응시 철농도의 변화와 반응 메커니즘의 연구 (The Study on the Change of Iron Concentration and the Reaction Mechanism of the 1,4-Dioxane Degradation using Zero Valent Iron and UV)

  • 손현석;임종권;조경덕
    • 대한환경공학회지
    • /
    • 제30권3호
    • /
    • pp.323-330
    • /
    • 2008
  • 본 논문은 1,4-dioxane의 분해를 위한 Fe$^0$와 Fe$^{2+}$의 반응에서 UV의 영향을 평가하기 위해 반응 중 [Fe$^{2+}$]와 용액 중 총철이온 농도에 대한 [Fe$^{2+}$]의 비([Fe$^{2+}$]/[Fe(t)])의 변화를 조사하였다. UV, Fe$^0$, 그리고 Fe$^{2+}$의 단독반응에 의한 1,4-dioxane의 분해효율은 10% 이하였으며 그 반응 동안 [Fe$^{2+}$]와 [Fe$^{2+}$]/[Fe(t)]의 변화 또한 거의 일어나지 않았다. 그러나 UV 조사에 의해 Fe$^0$의 산화는 약 25% 정도 증가하였을 뿐만 아니라 1,4-dioxane의 분해 효율 또한 개선되었다. Fenton 반응($Fe^{2+}+H_2O_2$)의 경우 반응초기 90분까지는 매우 빠른 분해율을 보인 반면 90분 이후에는 1,4-dioxane의 분해가 거의 정지되었다. Fe$^{2+}$와 UV 반응에서는 [Fe$^{2+}$]/[Fe(t)]가 반응 시작부터 감소하다가 90분 이후부터 완만한 증가를 보였다. Fe$^0$와 UV 반응의 경우 반응속도 상수는 반응시작 90분 동안 1.84$\times$10$^{-3}$ min$^{-1}$에서 Fe$^{2+}$의 변화가 일어나는 시간인 90분 이후 9.33$\times$10$^{-3}$ min$^{-1}$로 큰 상승을 보였고 이 변화는 [Fe$^{2+}$]/[Fe(t)]이 감소이후에 일어났다. [Fe$^{2+}$]/[Fe(t)]는 Fe$^{2+}$와 UV 반응에서 계속적으로 감소하였다. 그러나 그 반응에 ClO$_4^-$를 첨가한 경우 [Fe$^{2+}$]/[Fe(t)]는 완만한 상승을 보였다. 이 결과들은 1,4-dioxane의 분해는 주로 Fe$^0$이 Fe$^{2+}$로 산화되는 기간이 아닌 Fe$^{2+}$가 Fe$^{3+}$로 산화, 환원되는 반응 동안 일어났음을 보여준다. 즉, 1,4-dioxane의 주요 분해는 철순환에서 생성되는 라디칼에 의한 산화작용이라 할 수 있다. 또한 UV와 ClO$_4^-$는 Fe$^{3+}$의 환원에 큰 작용을 하는 것으로 관찰되었고 이는 radical의 지속적인 생산이라는 측면에서 1,4-dioxane의 분해효율을 증가시키기 위해 매우 중요한 부분이라 할 수 있다.

FeO/Fe(II) 시스템에서 TCE의 제거 특성 (Characteristics of the TCE removal in FeO/Fe(II) System)

  • 성동준;이윤모;최원호;박주양
    • 대한토목학회논문집
    • /
    • 제28권1B호
    • /
    • pp.149-152
    • /
    • 2008
  • 철의 환원 특성에 관한 연구는 이미 널리 수행되었으며 특히 미네랄과 2가철의 반응 메커니즘은 2가철의 흡착이나 바운드를 통해 Fe(II)-Fe(III) (hydr)oxides를 생성하여 2가철이 3가철로 산화됨으로써 물질을 환원시키는 것으로 받아들여지고 있다. 그러나 2가철로 개질된 재강슬래그를 이용한 DS/S 실험과정에서 이러한 메커니즘으로 설명하기 힘든 현상을 발견하였다. 재강슬래그의 주요 성분중의 하나인 FeO와 Fe(II)만을 이용하여 TCE의 분해과정을 실험해 본 결과 초기 TCE의 분해가 이루어지지 않다가 급속히 분해되는 현상을 보였으며 이러한 시스템에서 TCE의 분해는 예상치 못한 결과였다. FeO/Fe(II) 시스템은 3가철이 존재하지 않기 때문에 기존의 Fe(II)-Fe(III) (hydr)oxides를 형성하는 환원 메커니즘으로는 설명할 수 없었다. 따라서 본 연구에서는 TCE의 분해실험과 분해 부산물의 측정, 2가철과 3가철을 확인함으로써 FeO/Fe(II) 시스템의 환원특성을 확인해 보고자 하였다. 실험 결과 2가철이 FeO에 흡착 또는 바운드 되는 것을 확인 할 수 는 있었으나 기존의 메커니즘으로 설명하기에는 부족한 부분이 있었다. 분해부산물들을 통해 환원으로 인한 TCE의 분해는 의심의 여지가 없었으나 FeO/Fe(II) 시스템이 새로운 species를 형성하는지, 혹은 FeO에 Fe(II)가 흡착 또는 바운드 되어 이제껏 알려지지 않은 형태의 새로운 미네랄 상을 형성하는지는 좀 더 상세한 연구가 필요하다.

트리폴리인산염을 이용한 산성광산배수 내 칼슘 및 철이온 제거 (Removal of Ca2+ and Fe3+ in Acid Mine Drainage by Tripolyphosphates)

  • 현재혁;전형중;김지훈
    • 한국지반환경공학회 논문집
    • /
    • 제10권5호
    • /
    • pp.27-32
    • /
    • 2009
  • 이 연구는 산성광산배수(AMD, Acid Mine Drainage)를 대상으로 트리폴리인산나트륨의 적용을 평가한다. 경북에 위치한 문경 석탄탄광으로부터 발생한 AMD와 트리폴리인산나트륨의 회분식 반응실험에서 얻어진 결과에 근거하면, AMD를 처리하기 위한 트리폴리인산나트륨의 최적주입량은 $4.7{\times}10^{-3}mole$이었다. $Ca^{2+}$의 경우 농도가 $16.4mg/{\ell}$에서 처리 후 $5.6mg/{\ell}$로 감소하여 제거율은 65.9%이고, $Fe^{3+}$의 경우 농도가 $3.7mg/{\ell}$에서 처리 후 $0.02mg/{\ell}$로 감소하여 제거율은 99.5%이다. 그러나 $SO{_4}^{2-}$의 경우 농도가 $526.8mg/{\ell}$에서 $566.5mg/{\ell}$ 범위로 증가나 감소경향이 나타나지 않았다. 트리폴리인산나트륨을 사용한 결과, AMD 내 $Na^+$의 농도는 $549.8mg/{\ell}{\sim}599.3mg/{\ell}$이고 정인산염은 $6.82mg/{\ell}{\sim}7.60mg/{\ell}$였다. 트리폴리인산나트륨과 AMD의 반응에서 발생한 침전물을 SEM, XRF, XRD로 분석한 결과 침전물의 형태는 인회석${\gg}{\beta}$-인산삼칼슘>산화철$(Fe(OH)_3)$인 것으로 판단된다. 결과적으로 트리폴리인산염의 사용은 AMD에서 $Fe^{3+}$, $Ca^{2+}$ 제거와 pH 완충에 있어서 우수한 것으로 나타났다.

  • PDF

황산제일철과 황산제이철을 이용한 산화철 합성 (Synthesis of Iron Oxide Using Ferrous and Ferric Sulfate)

  • 엄태형;;김삼중;서동수
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.301-306
    • /
    • 2010
  • The chemical formula of magnetite ($Fe_3O_4$) is $FeO{\cdot}Fe_2O_3$, t magnetite being composed of divalent ferrous ion and trivalent ferric ion. In this study, the influence of the coexistence of ferrous and ferric ion on the formation of iron oxide was investigated. The effect of the co-precipitation parameters (equivalent ratio and reaction temperature) on the formation of iron oxide was investigated using ferric sulfate, ferrous sulfate and ammonia. The equivalent ratio was varied from 0.1 to 3.0 and the reaction temperature was varied from 25 to 75. The concentration of the three starting solutions was 0.01mole. Jarosite was formed when equivalent ratios were 0.1-0.25 and jarosite, goethite, magnetite were formed when equivalent ratios were 0.25-0.6. Single-phase magnetite was formed when the equivalent ratio was above 0.65. The crystallite size and median particle size of the magnetite decreased when the equivalent ratio was increased from 0.65 to 3.0. However, the crystallite size and median particle size of the magnetite increased when the reaction temperature was increased from $25^{\circ}C$ to $75^{\circ}C$. When ferric and ferrous sulfates were used together, the synthetic conditions to get single phase magnetite became simpler than when ferrous sulfate was used alone because of the co-existence of $Fe^{2+}$ and $Fe^{3+}$ in the solution.

펜톤시약에 의한 이온교환수지의 직접산화분해 (The Direct Decomposition of Ion-Exchange Resins by Fenton's Reagent)

  • 김길정;손종식;류우석
    • 방사성폐기물학회지
    • /
    • 제5권3호
    • /
    • pp.221-227
    • /
    • 2007
  • 음이온교환수지인 IRN-78및 IRN-77과의 혼합 수지를 액체 상태로 직접 분해 처리하기 위하여 Fenton 시약을 이용하였다. 개선된 분해방법의 특징은 수지를 먼저 건조시키고 $FeSO_4$ 용액을 수지에 완전히 흡수시킨 후 일정량의 $H_2O_2$를 첨가하여 분해반응을 유도하는 방법을 적용하였다. 촉매로서 $CuSO_4,\;Cu(NO_3)_2$ 및 IRN-77 수지의 분해시 사용한 $FeSO_4$를 각각 사용하여 각 이온교환수지의 단독 및 혼합수지의 분해에 필요한 적절한 촉매와 그의 농도 및 $H_2O_2$의 소요량을 측정하였다. IRN-78 수지에 대해 $CuSO_4$ 촉매를 사용한 경우, 초기 분해반응을 유도하기 위해 $40^{\circ}C$까지 가열이 필요하였으며, 반응유도시간은 촉매의 적정온도에서 약 20분 이내 개시되는 것으로 나타났다. 동 수지에 $FeSO_4$를 사용한 경우에는 가열 없이 즉시 분해반응이 진행되었으며 분해율도 수% 높게 나타났다. 결론적으로 IRN-78 및 IRN-77과의 혼합수지의 분해를 위한 최적 촉매는 $FeSO_4$로 나타났으며 가열하지 않고 상온에서 반응유도시간 없이 각 수지를 단독으로 분해한 경우보다 적은 양의 $H_2O_2$로 완전히 액상으로 분해시킬 수 있는 좋은 결과를 얻었다. 또한 이들 각각의 수지 및 혼합수지에 대한 적절한 촉매 및 적정 농도와 완전분해에 필요한 $H_2O_2$의 양을 제시하였다.

  • PDF

경남 고성군 판곡리 황토 현탁액의 구리 흡착 특성 (The Copper Adsorption onto Hwangto Suspension from Pankok-ri, Kosung-gun)

  • 조현구;박수자;추창오
    • 한국광물학회지
    • /
    • 제17권3호
    • /
    • pp.209-220
    • /
    • 2004
  • 구리 흡착 실험과 MINTEQA2 및 FITEQL3.2 컴퓨터 프로그램을 이용하여 고성군 판곡리에서 산출되는 황토 현탁액의 구리 흡착 특성을 연구하였다 구리 흡착 실험은 pH, 구리 용액의 양, 전해질의 이온 세기를 변화시키면서 실시하였고, 구리의 농도는 유도결합플라즈마분광분석기를 사용하여 분석하였다. 첨가하는 구리 이온의 양과 pH가 증가할수록 흡착되는 구리 이온의 양도 증가한다. 특히 pH가 5.5에서 6.5로 변할 경우 급격한 흡착률의 증가가 있으며, pH 7.5에서 거의 100% 흡착된다. 배경 전해질의 이온 세기에 영향을 받지 않는 것으로 보아 구리 이온은 황토 표면과 내부권 복합체(inner-sphere complex)로써 아주 강한 화학적 결합을 하고 있는 것으로 판단할 수 있다. MINTEQA2 프로그램을 이용하여 구리의 화학종 분포를 계산한 결과, pH가 증가함에 따라 $Cu^{2+}$ 의 농도는 점점 감소하고 $Cu(OH)_2$ 농도는 점점 증가한다. FITEQL3.2 프로그램을 이용하여 황토의 표면을 규산염 광물 자리와 산화염 광물 자리로 나눈 two sites-three pKas 모델을 적용하여 흡착 양상을 모델링한 결과, 구리 용액의 부피가 2~6 mL인 경우 구리 흡착 평형 상수 값을 도출할 수 있었다. 철산화염 광물 반응 자리에 흡착되는 구리의 앙은 pH 4.5~6.5 범위에서 급격한 흡착 양상을 보이다가 그 이상 pH에서는 흡착되는 양이 조금씩 밖에 증가하지 않는다. 규산염 광물 반응 자리에 흡착되는 구리의 양은 구리 용액의 양이 적을 때는 미약하다가 구리 용액의 양이 커질 경우 그 양이 많아진다. 침전에 의하여 제거되는 구리의 양은 광물 표면 자리에 흡착되는 양과 비교하면 아주 적다. 구리 이온에 대한 흡착 친화도는 규산염 광물보다는 철산화염 광물이 더 큰 것으로 판단된다.

The Electrochemical Behavior of Ni-base Metallic Glasses Containing Cr in H2SO4 Solutions

  • Arab, Sanaa.T.;Emran, Khadijah.M.;Al-Turaif, Hamad A.
    • 대한화학회지
    • /
    • 제56권4호
    • /
    • pp.448-458
    • /
    • 2012
  • In order to develop alloy resistance in aggressive sulphat ion, the corrosion behavior of metallic glasses $Ni_{92{\cdot}3}Si_{4.5}B_{32}$, $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ (at %) at different concentrations of $H_2SO_4$ solutions was examined by electrochemical methods and Scanning Electron Microscope (SEM) and X-ray Photoelectron Microscopy (XPS) analyses. The corrosion kinetics and passivation behavior was studied. A direct proportion was observed between the corrosion rate and acid concentration in the case of $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloys. Critical concentration was observed in the case of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ alloy. The influence of the alloying element is reflected in the increasing resistance of the protective film. XPS analysis confirms that the protection film on the $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ alloy was NiS which is less protective than that formed on Cr containing alloys. The corrosion rate of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$. alloys containing 7% and 13% Cr are $7.90-26.1{\times}10^{-3}$ mm/y which is lower about 43-54 times of the alloy $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ (free of Cr). The high resistance of $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloy at the very aggressive media may due to thicker passive film of $Cr_2O_3$ which hydrated to hydrated chromium oxyhydroxide.

고정화 Thermolysin을 사용한 아스파탐 전구체의 최적 합성조건 선정 (Synthetic Conditions of an Aspartame Precursorby Immobilized Thermolysin)

  • 한민수;김우정
    • 한국식품과학회지
    • /
    • 제27권4호
    • /
    • pp.564-570
    • /
    • 1995
  • Aspartame의 전구체인 BzAPM을 고정화 thermolysin으로 합성할 때 최적 조건을 찾고자 기질의 농도, 반응 pH 및 온도 그리고 금속이온, benzoic acid, Phe, NaCl의 농도가 어떤 영향을 주는지 조사하였다. 반응기질인 PheOMe와 BzAsp를 25% DMSO 및 20% PEG 200이 함유된 유기 용매계에서 반응시켰다. Bz-Asp의 농도를 100 mM로 일정하게 하였을 때 BzAPM의 합성 속도는 PheOMe의 농도가 증가함에 따라 직선형으로 증가하였으며, PheOMe의 농도를 300 mM로 하고 Bz-Asp의 농도를 변경시킨 경우에는 200 mM에서 반응 속도가 최고에 달하였다. BzAPM의 생산을 위한 최적 pH는 6.1 전후로 나타났으며, 최적 반응 온도는 $40^{\circ}C$이었다. 2가 금속 이온을 5mM로 첨가했을 때, $Zn^{2+},\;Mg^{2+},\;Fe^{2+},\;Cu^{2+}$이온은 고정화 thermolysin의 BzAPM 합성 수율을 저하시켰으나, $Co^{2+}$ 이온은 합성 수율을 2배 정도 증가시키는 것으로 확인되었다. $Co^{2+}$ 이온을 $Ca^{2+}$ 이온과 함께 첨가하면 $Co^{2+}$이온만 첨가할 때보다 합성 수율이 높게 나타났다. Benzoic acid와 Phe이 BzAPM의 합성을 저해하는 것으로 나타났으며, NaCl도 10% 농도로 첨가시에 합성을 약 25% 저하시켰다.

  • PDF

A Study on the Fabrication of Fe-Co Magnetic Fluid from the Waste Pickling Liquor of Steel

  • Kim, Young-Sam;Lee, Jong-Heon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.149-153
    • /
    • 2001
  • This paper describes on the fabrication of Fe-Co hydrophilic magnetic fluids from the waste pickling liquor of steel. By adding with HNO$_3$in the waste liquor oxidation is proceeded from Fe$^{3+}$ion at 6$0^{\circ}C$ with air blowing. Ultra-fine Co-ferrite particles with the mean particle size of 50 $\AA$ were produced at pH 12 after adjusting the ratio of Fe$^{3+}$Co$^{2+}$=7/3(wt%) and Fe-Co particles with the mean particle size of 94 $\AA$ were produced by reducing the Co-ferrite particle with H$_2$at the temperature of 50$0^{\circ}C$. After triple adsorption of oleic acid dodecyl benzene sulfonate(D.B.S.) and tetra methyl ammonium(T.M.A.) ions on the surface of Fe-Co particles Fe-Co hydrophilic magnetic fluid was produced by dispersing the Fe-Co particles in ethylene glycol solution. The magnetization of the Fe-Co hydrophilic magnetic fluid increased with increasing the Fe-Co concentration. The magnetic fluid containing 70% (g/cc) Fe-Co showed 73 emu/g in magnetization at the magnetic intensity of 10 kOe.kOe.e.

  • PDF

아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(I) (The Treatment of Heavy Metal-cyanide Complexes Wastewater by $Zn^{+2}/Fe^{+2}$ Ion and Coprecipitation in Practical Plant(I))

  • 이종철;강익중
    • 대한환경공학회지
    • /
    • 제29권12호
    • /
    • pp.1381-1389
    • /
    • 2007
  • 중금속 폐수는 다양한 유독성 화합물과 함께 배출되므로 상수원, 토양, 지하수 등의 환경에 악영향을 야기 시킬 수 있다. 이러한 고농도의 복합중금속과 시안착염을 포함한 도금폐수 처리 시 일반적으로 잘 알려진 알카리염소법에 의한($1^{st}$ Oxidation: pH 10, reaction time 30 min, ORP 350 mV, $2^{nd}$ Oxidation: ORP 650 mV) 시안의 잔류농도에 대한 제거효율은 유입수의 시안농도 374 mg/L에 비해 처리 후 잔류시안농도는 3.74 mg/L로써 그 제거효율이 99%로써 상당히 높았으나 수질환경보전법상 수질배출허용기준(나 지역) 1 mg/L 이하에 만족하기 위해서는 2차, 3차 등의 고도처리가 요구됨을 알 수 있었고, 이에 아연백법 및 공침처리공정(reaction time: 30 min, pH: 8.0, rpm: 240)을 적용하여 용해되어 잔류하는 시안착염을 불용성염으로 침전시켜 처리한 결과 잔류시안농도가 1.0 mg/L 이하의 만족할 만한 결과를 있었다. 크롬의 처리는 6가 크롬을 3가 크롬으로 환원(pH: 2.0 max, ORP: 250 mV)시킨 후, 수산화물로 처리(pH: 9.5)시 무난히 99%의 최대 제거효율을 얻을 수 있었다. 폐수 중 나머지 동(Cu)과 니켈(Ni)처리는 황화물 응집침전법을 적용한 결과 최적 pH는 $9.0\sim10.0$에서 $Na_2S$의 최적주입량이 Cu의 경우 0.5 mol에서 99.1%, Ni의 경우 3.0 mol에서 99.0% 이상 제거할 수 있었다. 즉 중금속 복합폐수 중 시안착염은 알카리 염소산화처리법만으로는 수질환경보전법의 규제치 이하로 처리가 불가능 하였고 아연백법 및 공침공정을 같이 적용한 결과 규제치 이하로 처리가 가능하다는 것을 현장 확인할 수 있었다.