• Title/Summary/Keyword: $ER^+$ MCF7

Search Result 58, Processing Time 0.024 seconds

Evaluation of In vitro and In vivo Screening Methods for Estrogenic Activity of Endocrine Disruptors (내분비계 장애물질의 에스트로겐 활성에 대한 In vitro 및 In vivo 검색시험법)

  • 김형식;한순영;한상국;신재호;문현주;김소희;박기숙;김규봉;이이다
    • Toxicological Research
    • /
    • v.16 no.2
    • /
    • pp.109-116
    • /
    • 2000
  • The purposes of our study were to optimize the conditions of the screening and testing methods for endocrine disruptors, to characterize these assays using several compounds with well-defined endocrine activity, and to compare the sensitivity between these assays currently undergoing validation. Two in vitro test systems, MCF-7 cells proliferation (E-screen assay) and competitive binding to estrogen receptors (ER) were selected to evaluate the estrogenic effects. 17$\beta$-Estradiol (E2) and diethylstilbestrol (DES) were used as a positive control in vitro test. Also, E2 and ethinyl estradiol (EE) were used as a positive control in vivo uterotrophic assay. In in vitro test, E2 and DES showed a strong estrogenic response at concentration of 1.0 nM. In uterotrophic assay, E2 (0.3 $\mu\textrm{g}$/kg) and EE (0.3 $\mu\textrm{g}$/kg) produced a significant increase in uterus and vagina weight in both immature and ovariectomized rats. Although we did not com-pared the specificity between in vivo and in vitro assays, these assay systems may serve as a good tool for endocrine disruptors screening methods. Our data indicate that these assay systems exhibit some difference in their sensitivity to the same estrogenic compounds. Therefore, as a first rapid screening assay for estrogenic activity qf unknown chemicals, at least two assay systems should probably be carried out with a view of high sensitivity and standardization conditions. Also, a careful validation tests are necessary to obtain a reasonable degree of reproducibility.

  • PDF

Overexpression of Cyclin E and its Low Molecular Weight Isoforms Cooperate with Loss of p53 in Promoting Oncogenic Properties of MCF-7 Breast Cancer Cells

  • Montazeri, Hamed;Bouzari, Saeid;Azadmanesh, Kayhan;Ostad, Seyed Nasser;Ghahremani, Mohammad Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7575-7582
    • /
    • 2015
  • Cyclin E, a key coordinator of the G1 to S transition in the cell cycle, may be deregulated in several malignancies, including breast cancer. The most significant aberration in cyclin E is its elastase mediated proteolytic cleavage into tumor specific low molecular weight isoforms (LMW-Es). LMW-Es are biochemically hyperactive and biologically drive tumorigenesis in transgenic mouse models. Additionally, expression of LMW-Es has been correlated with poor survival in breast cancer cases. Here we determine whether expression of LMW-Es in a breast cancer cell line that is naturally devoid of these deregulated forms would alter their progression through each phase of the cell cycle. The results revealed that LMW-Es expression resulted in an increased doubling time, concomitant with a predominant increase in the population in the S phase of the cell cycle. Moreover, downregulation of p53 in LMW-Es cells resulted in additional shortening of the doubling time and enrichment of cells in the S and G2/M phases of the cell cycle. Furthermore, expression of LMW-Es sensitized cells to ${\beta}$-estradiol (E2) mediated growth and changed expression patterns of estrogen receptor and Bcl-2. Intriguingly, expression of LMW-Es could surpass anti-apoptotic effects raised by p53 upregulation. Taken together these studies suggest that overexpression of LMW-Es in collaboration with p53 loss results in altered g rowth properties of MCF-7 cells, enhancing the oncogenic activity of these ER positive breast cancer cells.

Sterol Composition and Phytoestrogen Activity of Safflower(Carthamus tinctorius L.) Seed (홍화(Carthamus tinctorius L.)씨의 sterol 및 Phytoestrogen 분석)

  • 최영주;최상욱
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.529-534
    • /
    • 2003
  • This study was done to investigated the phytosterol compositions of safflower (Carthamus tinctorius L.) seed. The phytoestrogen activity was also determined using CAT-ELISA Kit in ethanol extract of safflower seed. The phytosterol of safflower seeds was identified using gas chromatography-mass spectrometry after saponification of the oils. The phytosterol content and composition of safflower seed oils were 4% and identified stigmast-5-en-3-ol (3$\beta$, 24S)-form, ${\gamma}$-sitosterol (clionasterol) with Wiley MS spectrum library. The synergistic effect of human estrogen receptor (hER) has been investigated using a minimal chimeric promoters composed of the TATA region of the adenovirus-2 major late promoter (A22MLP) and two consensus perfectly polindromic Xenopus vitellogenin A2 gene estrogen responsive elements (XVEREl19). Transient transfection experiments in tile human breast adenocarcinoma cell line MCF-7, which is known to express the estrogen receptor endogenously, revealed that phytoestrogen from Carthamus tinctorius L. acts as estrogen. We have observed the transcriptional activities stimulated methanol and ethanol extract of safflower seed in MCF-7, were 0.43 and 0.37 respectively, compared to that by $\beta$-estradiol as 1.0. Our data showed that safflower seeds have estrogenic activity methanol and ethanol extracts and ethanol lower than that of $\beta$-estradiol. This result provides the first evidence that the beneficial effect of safflower seeds may be mediated, at least in part, by the stimulating effect of phytoestrogen ell bone-protecting.

The Effects on Antimicrobial and Anticarcinogenic Activity of Momordica Charantia L. (메탄올로 추출한 여주 분획성분의 항균 및 항발암 효과)

  • 배송자
    • Journal of Nutrition and Health
    • /
    • v.35 no.8
    • /
    • pp.880-885
    • /
    • 2002
  • This study was performed to determine the antimicrobial and anticarcinogenic activities of the Momordica charantia L. (MC) on several microorganisms and human cancer cell lines. In the paper disk test, its antimicrobial activity was increased in proportion to its concentration. Among the various solvent fractions of Momordica charantia L., the ethylether partition layer (MCMEE) showed the strongest antimicrobial activity. Also, the ethylacetate partition layer (MCMEA) and the butanol partition layer (MCMB) showed antimicrobial activity. We also determined the cytotoxicity and chemopreventive effect of Momordica charantia L. extract and fractions on human cancer cells. The experiment was conducted to determine the cytotoxicity of Momordica charantia L. partition layers on HepG2, HeLa and MCF-7 cells by MTT assay. Among the various partition layers of Momordica charantia L., MCMEE and MCMEA showed strong cytotoxic effects on all cancer cell lines. The chemopreventive effect of the quinone reductase induced activities of HepG2 cell, the hexane partition layer (MCMH) at a dose of 50 $\mu\textrm{g}$/mL was 3.62 times more effective compared with the control values of 1.0. Therefore, based on these studies, Momordica charantia L. may be developed into a potentially useful cancer chemopreventive agent.

Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells

  • Lee, Hye Min;Moon, Aree
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.62-66
    • /
    • 2016
  • Amygdalin, D-mandelonitrile-${\beta}$-D-glucoside-6-${\beta}$-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin ${\alpha}5$ may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.

Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase

  • Kim, Dong Eun;Kim, Yunha;Cho, Dong-Hyung;Jeong, Seong-Yun;Kim, Sung-Bae;Suh, Nayoung;Lee, Jung Shin;Choi, Eun Kyung;Koh, Jae-Young;Hwang, Jung Jin;Kim, Choung-Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.

The effect of isoflavonoid contents in SH003 and its subfractions on breast cancer (SH003과 분획물의 구성 성분인 이소플라본의 유방암에 대한 효과)

  • Yu-Jeong Choi;Won-Geun Choi;Kangwook Lee;Miso Jeong;Sang Cheol Park;Young Pyo Jang;Seong-Gyu Ko
    • The Journal of Korean Medicine
    • /
    • v.43 no.3
    • /
    • pp.79-93
    • /
    • 2022
  • Objectives: We investigated the isoflavone contained in SH003 and its fractions, and the effect of these components on the inhibition of breast cancer. Methods: The isoflavones in solvent fractions of SH003 extract were identified by UPLC-MS and its contents were quantified using HPLC analysis. The estrogenic activity of SH003 or fractions was assessed by ERE luciferase assay in estrogen receptor (ER)-positive MCF-7 cells. To test the breast cancer inhibitory effect, the cell viability was measured using an MTT assay. Results: In this study, we demonstrated that SH003 and fractions contain 4 isoflavones which are calycosin-7-β-D-glucoside, formononetin-7-β-D-glucoside, calycosin, and formononetin. Despite containing isoflavones, estrogen-dependent transcription activity was not altered by both SH003 and fractions. On the other hand, SH003 and fractions inhibited the cell viability of breast cancer. In addition, its isoflavone components also showed reduced cell viability in various breast cancer cells. Conclusions: Overall, the phytoestrogen included in SH003 and fractions did not influence the estrogenic activity, emphasizing the safety of SH003 and fractions in breast cancer treatment.

A rare ginsenoside compound K (CK) induces apoptosis for breast cancer cells

  • Seun Eui Kim;Myoung-Hoon Lee;Hye-Myoung Jang;Wan-Taek Im;Joontaik Lee;Sang-Hwan Kim;Gwang Joo Jeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.167-176
    • /
    • 2023
  • Background: A breast cancer is the second leading cause of cancer death in women worldwide and among different types of breast cancers, triple-negative breast cancer (TNBC) has a poor prognosis. Methods: We investigated the potential of ginsenoside compound K (CK), an active ingredient in the bio-transformed ginsenoside, to be used as a therapeutic ingredient by examining the effects of CK on cell proliferation, apoptosis, and cancer-related gene expressions in breast cancer cells. Results: From the results of treating MCF-7, an ER and PR-positive breast cancer cells, and MDA-MB-231 (TNBC) with CK at a concentration of 0-100 µM, the half maximal inhibitory concentration (IC50) values for each cell were 52.17 µM and 29.88 µM, respectively. And also, it was confirmed that cell migration was inhibited above the IC50 concentration. In addition, fluorescence analysis of Apoptosis/Necrosis showed that CK induced apoptosis rather than necrosis of breast cancer cells. Through qPCR, it was confirmed that the expression of genes related to apoptosis and cell cycle arrest was increased in CK-treated breast cancer cells, and it acted more effectively on TNBC. However, the expression of genes related to tumor invasion and metastasis is also increased, so it is necessary to consider the timing of application of CK as a potential therapeutic anticancer compound. Conclusions: CK showed a stronger inhibitory effect in TNBC with poor prognosis but considering the high tumor invasion and metastasis-related gene expression, the timing of application of CK should be considered.