• Title/Summary/Keyword: $ER^+$ MCF7

Search Result 58, Processing Time 0.032 seconds

Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells

  • Yang, Seoyeon;Lee, Ji-Yeon;Hur, Ho;Oh, Ji Hoon;Kim, Myoung Hee
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.450-455
    • /
    • 2018
  • Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

Selective Estrogen Receptor Modulation by Larrea nitida on MCF-7 Cell Proliferation and Immature Rat Uterus

  • Ahn, Hye-Na;Jeong, Si-Yeon;Bae, Gyu-Un;Chang, Minsun;Zhang, Dongwei;Liu, Xiyuan;Pei, Yihua;Chin, Young-Won;Lee, Joongku;Oh, Sei-Ryang;Song, Yun Seon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.347-354
    • /
    • 2014
  • Larrea nitida is a plant that belongs to the Zygophyllaceae family and is widely used in South America to treat inflammatory diseases, tumors and menstrual pain. However, its pharmacological activity remains unclear. In this study we evaluated the property of selective estrogen receptor modulator (SERM) of Larrea nitida extracts (LNE) as a phytoestrogen that can mimic, modulate or disrupt the actions of endogenous estrogens, depending on the tissue and relative amount of other SERMs. To investigate the property of SERM of LNE, we performed MCF-7 cell proliferation assays, estrogen response element (ERE)-luciferase reporter gene assay, human estrogen receptor (hER) binding assays and in vivo uterotrophic assay. To gain insight into the active principles, we performed a bioassay-guided analysis of LNE employing solvents of various polarities and using classical column chromatography, which yielded 16 fractions (LNs). LNE showed high binding affinities for $hER{\alpha}$ and $hER{\beta}$ with $IC_{50}$ values of $1.20{\times}10^{-7}$ g/ml and $1.00{\times}10^{-7}$ g/ml, respectively. LNE induced $17{\beta}$-estradiol (E2)-induced MCF-7 cell proliferation, however, it reduced the proliferation in the presence of E2. Furthermore, LNE had an atrophic effect in the uterus of immature rats through reducing the expression level of progesterone receptor (PR) proteins. LN08 and LN10 had more potent affinities for binding on $hER{\alpha}$ and ${\beta}$ than other fractions. Our results indicate that LNE had higher binding affinities for $hER{\beta}$ than $hER{\alpha}$, and showed SERM properties in MCF-7 breast cancer cells and the rat uterus. LNE may be useful for the treatment of estrogen-related conditions, such as female cancers and menopause.

Emodin Inhibits Breast Cancer Cell Proliferation through the ERα-MAPK/Akt-Cyclin D1/Bcl-2 Signaling Pathway

  • Sui, Jia-Qi;Xie, Kun-Peng;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6247-6251
    • /
    • 2014
  • Background: The aim of the present study was to investigate the involvement of emodin on the growth of human breast cancer MCF-7 and MDA-MB-231 cells and the estrogen (E2) signal pathway in vitro. Materials and Methods: MTT assays were used to detect the effects of emodin on E2 induced proliferation of MCF-7 and MDA-MB-231 cells. Flow cytometry (FCM) was applied to determine the effect of emodin on E2-induced apoptosis of MCF-7 cells. Western blotting allowed detection of the effects of emodin on the expression of estrogen receptor ${\alpha}$, cyclin D1 and B-cell lymphoma-2 (Bcl-2), mitogen-activated protein kinases (MAPK) and phosphatidylinostiol 3-kinases (PI3K). Luciferase assays were emplyed to assess transcriptional activity of $ER{\alpha}$. Results: Emodin could inhibit E2-induced MCF-7 cell proliferation and anti-apoptosis effects, and arrest the cell cycle in G0/G1 phase, further blocking the effect of E2 on expression and transcriptional activity of $ER{\alpha}$. Moreover, Emodin influenced the ER ${\alpha}$ genomic pathway via downregulation of cyclin D1 and Bcl-2 protein expression, and influenced the non-genomic pathway via decreased PI3K/Akt protein expression. Conclusions: These findings indicate that emodin exerts inhibitory effects on MCF-7 cell proliferation via inhibiting both non-genomic and genomic pathways.

Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells

  • Jeon, Yong-Joon;Kim, Jin Hyun;Shin, Jong-Il;Jeong, Mini;Cho, Jaewook;Lee, Kyungho
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.129-135
    • /
    • 2016
  • Eukaryotic translation initiation factor 2 alpha ($eIF2{\alpha}$), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of $eIF2{\alpha}$ phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of $eIF2{\alpha}$ in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of $eIF2{\alpha}$, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of $eIF2{\alpha}$ phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of $eIF2{\alpha}$ by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.

Estrogen activity of Silkworm (Bombyx mori) Pupa water extract and its fractions

  • Ryu, Jae-Sung;Jo, Gyeong-Jong;Jin, Jung-Woo;Yang, Hyo-Jung;Park, Yong-Il;Na, Ye-Seul;Nam, Kyung-Su;Keum, Kyung-Soo;Choo, Young-Kug
    • Advances in Traditional Medicine
    • /
    • v.8 no.3
    • /
    • pp.228-235
    • /
    • 2008
  • This study was conducted to evaluate the estrogen activity of silkworm (Bombyx mori) pupa extracts and their fractions. Powdered samples of freeze-dried silkworm pupa were extracted at room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$, and $100^{\circ}C$ in water (D.W), chloroform, ethyl acetate, and methanol for 6h and then filtered (0.45 um). The extracts were then freeze-dried. The estrogenic activity of these extracts was then investigated by competition binding assays using estrogen receptor ${\alpha}\;(ER{\alpha})$ and $ER{\beta}$, and by evaluating their effects on the proliferation of the human breast cancer cell line, MCF-7. Among the extracts evaluated, water extracts prepared at RT showed the highest binding affinity to $ER{\alpha}$ ($IC_{50}$, 1.76 ug/ml) and $ER{\beta}$ ($IC_{50}$, 0.07 ug/ml). In addition, MCF-7 cells that were treated with 62.5 ug/ml of the RT extract showed the greatest increase in proliferation (2-fold; 1291.79%) when compared to control cells (659.82%). Next, the water extract that was prepared at RT (sample 1) was dissolved in D.W. and further fractionated using a Dowex 50W - 8X ($H^+$) column. The flow-through and wash were then pooled together and freeze-dried (sample 2). The bound materials were then eluted with 20 mM NaCl, after which they were applied to a Dowex 1X2 - 200 ($Cl^-$) column and washed with D.W. to remove the sodium ions. The eluants were then freeze-dried (sample 3). Of these fractions, sample 2 showed the highest binding affinity to ER{\alpha} ($IC_{50}$, 1.44 ug/ml) and $ER{\beta}$ ($IC_{50}$, 1.18 ug/ml). In addition, MCF-7 cells that were treated with sample 2 (15.6 ug/ml) showed the largest increase in growth (1159.39%) when compared to control cells (525.26%). Taken together, these results suggest that the fraction of the RT water extract of silkworm pupa referred to as sample 2 may be useful as a phytoestrogen.

Cell Cycle Modulation of MCF-7 and MDA-MB-231 by a Sub-Fraction of Strobilanthes crispus and its Combination with Tamoxifen

  • Yaacob, Nik Soriani;Kamal, Nik Nursyazni Nik Mohamed;Wong, Kah Keng;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8135-8140
    • /
    • 2016
  • Background: Cell cycle regulatory proteins are suitable targets for cancer therapeutic development since genetic alterations in many cancers also affect the functions of these molecules. Strobilanthes crispus (S. crispus) is traditionally known for its potential benefits in treating various ailments. We recently reported that an active sub-fraction of S. crispus leaves (SCS) caused caspase-dependent apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells. Materials and Methods: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle-related transcripts was analysed based on a previous microarray dataset. Results: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of $ER{\alpha}$ protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied. Conclusions: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Oestrogenic Activity of Parabens In Vitro Estrogen Assays (에틸, 프로필, 이소프로필, 부틸, 이소부틸 파라벤의 In Vitro 검색시험 연구에서의 내분비독성)

  • Lee Sung-Hoon;Kim Sun-Jung;Park Jung-Ran;Jo Eun-Hye;Ahn Nam-Shik;Park Joon-Suk;Hwang Jae-Woong;Jung Ji-Youn;Lee Yong-Soon;Kang Kyung-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The use of underarm and body care cosmetics with oestrogenic chemical excipients (particularly the parabens) and the hypothesized association with breast cancer incidence, particularly in women. It is noted that the type of cosmetic product is irrelevant (e.g. antiperspirant/deodorant versus body lotion, moisturizers or sprays versus creams) and attention must focus on issues of actual exposure to chemicals through continued dermal application of body care products and the endocrine/hormonal activity and toxicity of the chemicals in the formulations. To evaluate the estrogenic activities of parabens such as ethylparaben, butylparaben, propylparaben, isobutylparaben and isopropylparaben, we used recombinant yeasts containing the human estrogen receptor [Saccharomyces cerevisiae ER+LYS 8127], human breast cancer MCF-7 cell lines and human estrogen receptor ${\alpha}\;and\;{\beta}$. In E-screen assays, isopropylparaben is the most estrogenic paraben, and in ER competition assay, isobutylparaben is the most estrogenic paraben. We evaluated isopropylparaben was most active in the recombinant yeast assay, followed by propylparaben, ethylparaben, isobutylparaben and butylparaben. Results from this study demonstrate that parabens are observed in human endocrine system. Therefore, we have shown that the parabens is induced the estrogenic activities similar to $17{\beta}$-estradiol and Bisphenol-A.

Non-Benzoquinone Geldanamycin Analog, WK-88-1, Induces Apoptosis in Human Breast Cancer Cell Lines

  • Zhao, Yu-Ru;Li, Hong-Mei;Zhu, Meilin;Li, Jing;Ma, Tao;Huo, Qiang;Hong, Young-Soo;Wu, Cheng-Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.542-550
    • /
    • 2018
  • Heat shock protein 90 (Hsp90) is treated as a molecular therapeutic target for the prevention and treatment of cancer. Geldanamycin (GA) was the first identified natural Hsp90 inhibitor, but hepatotoxicity has limited its clinical application. Nevertheless, a new GA analog (WK-88-1) with the non-benzoquinone skeleton, obtained from genetically engineered Streptomyces hygroscopicus, was found to have anticancer activity against two human breast cancer cell lines. WK-88-1 produced concentration-dependent inhibition of cell proliferation, cell cycle arrest, and apoptosis in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cell lines. Detailed analysis showed that WK-88-1 downregulated some key cell cycle molecules (CDK1 and cyclin B1) and lead to $G_2/M$ cell cycle arrest. Further studies also showed that WK-88-1 could induce human breast cancer cell apoptosis by downregulating Hsp90 client proteins (Akt, p-Akt, IKK, c-Raf, and Bcl-2), decreasing the ATP level, increasing reactive oxygen species production, and lowering the mitochondrial membrane potential. Meanwhile, we discovered that WK-88-1 significantly decreased the levels of Her-2 and $ER-{\alpha}$ in MCF-7 cells but not in MDA-MB-231 cells. In addition, WK-88-1 significantly increased caspase-3, -8, and -9 activities and the cleavage of PARP in a concentration-dependent manner (with the exception of caspase-3 and PARP in MCF-7 cells). Taken together, our preliminary results suggest that WK-88-1 has the potential to play a role in breast cancer therapy.

Mitogenic Estrogen Metabolites Alter the Expression of β-estradiol-regulated Proteins Including Heat Shock Proteins in Human MCF-7 Breast Cancer Cells

  • Kim, Seong Hwan;Lee, Su-Ui;Kim, Myung Hee;Kim, Bum Tae;Min, Yong Ki
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.378-384
    • /
    • 2005
  • Estrogen metabolites are carcinogenic. The comparative mitogenic activities of $17{\beta}$-estradiol (E2) and four metabolites, 2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), $16{\alpha}$-hydroxyestrone ($16{\alpha}$-OHE1) and 2-methoxyestradiol (2-ME), were determined in estrogen receptor(ER)-positive MCF-7 human breast cancer cells. Each of the E2 metabolites caused proliferation of the MCF-7 cells, but only E2 and $16{\alpha}$-OHE1 induced a greater than 20-fold increases in transcripts of the progesterone receptor (PR) gene, a classical ER-mediated gene. This suggests that the mitogenic action of E2 and $16{\alpha}$-OHE1 could result from their effects on gene expression via the ER. E2 metabolites altered the expression of E2-regulated proteins including heat shock proteins (Hsps). $16{\alpha}$-OHE1 and 2-ME as well as E2 increased levels of Hsp56, Hsp60, $Hsp90{\alpha}$ and Hsp110 transcripts, and the patterns of these inductions resembled that of PR. Hsp56 and Hsp60 protein levels were increased by all the E2 metabolites. Levels of the transcripts of 3 E2-upregulated proteins (XTP3-transactivated protein A, protein disulfide isomerase-associated 4 protein and stathmin 1) and an E2-downregulated protein (aminoacylase 1) were also affected by the E2 metabolites. These results suggest that the altered expression of Hsps (especially Hsp56 and Hsp60) by E2 metabolites such as E2, $16{\alpha}$-OHE1 and 2-ME could be closely linked to their mitogenic action.