• Title/Summary/Keyword: $Cu_2O$ additive

Search Result 78, Processing Time 0.021 seconds

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects (셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화)

  • Kim, Eun Ae;Bai, Byong Chol;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.

Current Limiting Characteristics of a Flux-Lock Type SFCL for a Single-Line-to-Ground Fault

  • Oh, Geum-Kon;Jun, Hyung-Seok;Lee, Na-Young;Choi, Hyo-Sang;Nam, Gueng-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-77
    • /
    • 2006
  • We have fabricated an integrated three-phase flux-lock type SFCL, which consists of an YBCO($YB_a2Cu_3O_7$) thin film and a flux-lock reactor wound around an iron core of each phase. In order to apply the SFCL in a real power system, fault analyses for the three-phase system are essential. The short-circuit currents were effectively limited by adjusting the numbers of winding of each secondary coil and their winding directions. The flux flow generated in the iron core cancelled out under the normal operation due to the parallel connection between primary and secondary windings. However, the flux-lock type SFCL with same iron core was operated just after the fault due to the flux generating in the iron core. To analyze the current limiting characteristics, the additive polarity winding was compared with the subtractive one in the flux lock reactor. Whenever a single line-to-ground fault occurred in any phase, the peak value of the line current of the fault phase in the additive polarity winding increased up to about 12.87 times during the first-half cycle. On the other hand, the peak value in the subtractive polarity winding increased up to about 34.07 times under the same conditions. This is because the current flow between the primary and the secondary windings changed to additive or subtractive status according to the winding direction. We confirmed that the current limiting behavior in the additive polarity winding was more effective for a single-line-to-ground fault

Dielectric and Piezoelectric Characteristics of Low Temperature Sintering 0.20Pb(Zn1/3Nb2/3)O3-0.80Pb(Zr0.48Ti0.52)O3 Ceramics with the Addition of Sintering Aid ZnO (소결조제 ZnO 첨가에 따른 저온소결 0.20Pb(Zn1/3Nb2/3)O3-0.80Pb(Zr0.48Ti0.52)O3 세라믹스의 유전 및 압전특성)

  • Yoo, Ju-Hyun;Lee, Yu-Hyong;Kim, Do-Hyung;Lee, Il-Ha;Kwon, Jun-Sik;Paik, Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2008
  • In this study, in order to develop low loss multilayer piezoelectric actuator, PZN-PZT ceramics were fabricated using $Li_2CO_3,\;Bi_2O_3$, CuO and ZnO as sintering aids, their structural, piezoelectric and dielectric characteristics were investigated according to the amount of ZnO addition, At the sintering temperature of $870^{\circ}C$, the density, electromechanical coupling factor(kp), mechanical quality factor(Qm), dielectric constant(${\epsilon}_r$) and piezoelectric constant($d_{33}$) of 0.4 wt% ZnO added specimen (sintered at $870^{\circ}C$) showed the optimum value of $7.812g/cm^3$, 0.535, 916, 1399, 335 pC/N respectively. Taking into consideration above piezoelectric properties of the specimen sintered at low temperature, it was concluded that PZN-PZT ceramics using 0.4 wt% ZnO as additive showed the optimum characteristics as the composition ceramics for low loss multilayer piezoelectric actuator application.

Electrophoretic Deposition of YBCO powder in mixed suspension solution of iso-prophanol and iso-buthanol (이소프로판올과 이소부탄올 용매에서의 YBCO 분말 영동전착)

  • Soh, Dae-Wha;Li, Ying-Mei;Park, Jung-Cheul;N., Korobova
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.288-291
    • /
    • 2001
  • It is very important to select suspension solution for forming electrophoretic deposited YBCO thick mm, because it is heavily affected to its superconducting properties. In this paper, high-temperature superconductor films of $YBa_{2}Cu_{3}O_{7-x}$ were fabricated by electrophoretic deposition (EPD) from alcohol-based suspension such as iso-propanol, iso-butanol, and their mixture. For the formation of YBCO dense and adherent coating on a silver wire by EPD, 1 % PEG(1000) 2 ml, as a additive for making their surface crack-free, was used for electrophoresis. As a results, the cracks were considerably decreased and the superconducting critical current density $(J_e)$ without/with PEG was $1200A/cm^2$ and $2020A/cm^2$, which films deposited in mix iso-propanol and iso-butanol suspension.

  • PDF

Electrophoretic Deposition of YBCO powder in mixed suspension solution of iso-prophanol and iso-buthanol (이소프로판올과 이소부탄을 용매에서의 YBCO 분말 영동전착)

  • ;;;Korobova N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.288-291
    • /
    • 2001
  • It is very important to select suspension solution for forming electrophoretic deposited YBCO thick film, because it is heavily affected to its superconducting properties. In this paper, high-temperature superconductor films of YBa$_2$Cu$_3$$O_{7-x}$ were fabricated by electrophoretic deposition (EPD) from alcohol-based suspension such as iso-propanol, iso-butanol, and their mixture. For the formation of YBCO dense and adherent coating on a silver wire by EPD, 1% PEG(1000) 2 $m\ell$, as a additive for making their surface crack-free, was used for electrophoresis. As a results, the cracks were considerably decreased and the superconducting critical current density (J$_{c}$) without/with PEG was 1200 A/$\textrm{cm}^2$ and 2020 A/$\textrm{cm}^2$, which films deposited in mix ism-propanol and iso-butanol suspension.ion.

  • PDF

Effect of Polyethylene Glycol on Cu Electrodeposition (구리전해도금에서 폴리에틸렌글리콜(polyethylene glycol)의 영향 연구)

  • An, Eui Gyeong;Choi, Sun Gi;Lee, Jaewon;Cho, Sung Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.113-118
    • /
    • 2022
  • In this study, the effect of polyethylene glycol (PEG) on Cu electrodeposition was analyzed using cyclic voltammetry. The adsorption of PEG was affected by the specific adsorption of sulfate ion (SO42-) or chloride ion (Cl-). In SO42--based plating solution, the adsorption of PEG was limited by the adsorbed SO42-. Accordingly, the adsorbed PEG could suppress the electron transfer for Cu electrodeposition, but its effect was not significant. Meanwhile, in the plating solution composed of perchlorate ion (ClO4-) which does not specifically adsorb on Cu surface, a strong suppression effect of PEG was observed and it was proportional to the molecular weight of PEG. On the other hand, when Cl- was specifically adsorbed on Cu surface, the suppression effect of PEG was enhanced because PEG and Cl- formed an interrelated adsorbate. The synergetic effect of PEG and Cl- depended on the composition of the plating solution, which means that the synergy between PEG and Cl- is based on the physical interaction. For example, the hydrophobicity of PEG plays an important role in the interaction, as the suppression effect of PEG derivative having a hydrocarbon tail was further enhanced with the addition of Cl-.

디지털 프린팅 용액 공정 소재 개발 동향

  • O, Seok-Heon;Son, Won-Il;Park, Seon-Jin;Kim, Ui-Deok;Baek, Chung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.2-19.2
    • /
    • 2010
  • Printed electronics using printing process has broadened in all respects such as electrics (lighting, batteries, solar cells etc) as well as electronics (OLED, LCD, E-paper, transistor etc). Copper is considered to be a promising alternative to silver for printed electronics, due to very high conductivity at a low price. However, Copper is easily oxidized, and its oxide is non-conductive. This is the highest hurdle for making copper inks, since the heat and humidity that occurs during ink making and printing simply accelerates the oxidation process. A variety of chemical treatments including organic capping agents and metallic coating have been used to slow this oxidation. We have established synthetic conditions of copper nanoparticles (CuNPs) which are resistant to oxidation and average diameter of 20 to 50nm. Specific resistivity should be less than $4\;{\mu}{\Omega}{\cdot}cm$ when sintered at lower temperature than $250^{\circ}C$ to be able to apply to conductive patterns of FPCBs using ink-jet printing. Through this study, the parameters to control average diameter of CuNPs were found to be the introduction of additive agent, the feeding rate of reducing agent, and reaction temperature. The CuNPs with various average diameters (58, 40, 26, 20nm) could be synthesized by controlling these parameters. The dispersed solution of CuNPs with an average size of 20 nm was made with nonpolar solvent containing 3 wt% of binder, and then coated onto glass substrate. After sintering the coated substrates at $250^{\circ}C$ for 30 minutes in nitrogen atmosphere, metallic copper film resulted in a specific resistivity of $4.2\;{\mu}{\Omega}{\cdot}cm$.

  • PDF

Electromagnetic Wave Absorption Properties in Fe-based Nanocrystalline P/M Sheets with Carbon Black and BaTiO3 Additives

  • Kim, Mi-Rae;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • In order to increase the magnetic loss for electromagnetic(EM) wave absorption, the soft magnetic $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was used as the basic material in this study. The melt-spun strip was pulverized using an attrition mill, and the pulverized flake-shaped powder was crystallized at $540^{\circ}C$ for 1h to obtain the optimum grain size. The Fe-based powder was mixed with 2 wt% $BaTiO_3$, $0.3{\sim}0.6$ wt% carbon black, and polymer-based binders for the improvement of electromagnetic wave absorption properties. The mixture powders were tape-cast and dried to form the absorption sheets. After drying at $100^{\circ}C$ for 1h, the sheets of 0.5 mm in thickness were made by rolling at $60^{\circ}C$, and cut into toroidal shape to measure the absorption properties of samples. The characteristics including permittivity, permeability and power loss were measured using a Network Analyzer(N5230A). Consequently, the properties of electromagnetic wave absorber were improved with the addition of both $BaTiO_3$ and carbon black powder, which was caused by the increased dielectric loss of the additive powders.

Mass Reduction and Physicochemical Properties of the Produced Compost during Composting Domestic Food Wastes in a Small Composter (소형 퇴비화용기에서 가정 음식물쓰레기의 퇴비화 과정 중 감량화 및 생산 퇴비의 물리화학적 특성)

  • Park, Ju-Won;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.238-243
    • /
    • 2001
  • Mass reduction and physicochemical properties of the produced compost were investigated during composting domestic food wastes without additive. A small composter used in this study had the height of 15 cm from the center of bottom half circle (diameter 24 cm) up to under the lid, the side length of 50 cm and the horizontal lid angle of $50^{\circ}$ and was operated at the heating unit temperature of $85^{\circ}$. It was mixed by the rotating arm for two minutes in every half hour while supplied with air flow at 3 L/min for 10 minutes in every half hour. This condition was found in a preliminary experiment as optimal for keeping the water content of composting material in the optimal range without adding any bulking materials. The domestic food wastes were added into the composter at the rate of 1 kg/day without additives during composting. The results were as follows; during the composting process, water content maintained in the range of $51.0{\sim}53.5%$. Hemicellulose and lignin contents did not show any tendency, but cellulose content decreased. During the composting process, $NH_3-N$ and $NO_2-N$ were not detected due to nitrification. The contents of inorganic compounds did not increase during the composting process. They were in the range of $1.32{\sim}1.71%\;P_2O_5$, $1.29{\sim}1.48%\;CaO$, $0.41{\sim}0.49%\;MgO$, and $0.38{\sim}0.74%\;K_2O$. For 20 days, weight reduction rate was 67.5% in wet basis, and decomposition rate was 48% in dry basis. Concentration of heavy metals (Cu, Cr, Cd, Pb, Zn, Hg, As) was less than the limiting value of the compost. Maturity of the produced compost was 3 grade through reaching maximum temperature of $46{\sim}48^{\circ}C$.

  • PDF

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.603-604
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro- structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_{2}O_3$ abrasive particles in CMP slurry.

  • PDF