• Title/Summary/Keyword: $CuInS_2$ thin film

Search Result 244, Processing Time 0.025 seconds

Thermal Degradation of BZO Layer on the CIGS Solar Cells

  • Choi, Pyungho;Kim, Sangsub;Choi, Byoungdeog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.458-458
    • /
    • 2013
  • We investigated a study on the thermal degradation of boron doped zinc-oxide (BZO) layer which used as a transparent conducting layer on the Cu (In1-xGax) Se2 (CIGS) based thin film solar cells. Devices were annealed under the temperature of $100^{\circ}C$ or 100 hours and then Hall measurement was carried out to characterize the parameters of mobility (${\mu}Hall$), resistivity (${\rho}$), conductivity (${\sigma}$) and sheet resistance (Rsh). The initial values of ${\mu}Hall$, ${\rho}$, ${\sigma}$ and Rsh were $29.3cm^2$/$V{\cdot}s$, $2.1{\times}10^{-3}{\Omega}{\cdot}cm$, $476.4{\Omega}^{-1}{\cdot}cm^{-1}$ and $19.1{\Omega}$/${\Box}$ respectively. After the annealing process, the values were $4.5cm^2$/$V{\cdot}s$, $12.8{\times}10^{-3}{\Omega}{\cdot}cm$, $77.9{\Omega}^{-1}{\cdot}cm^{-1}$ and $116.6{\Omega}$/${\Box}$ respectively. We observed that ${\mu}Hall$ and ${\sigma}$ were decreased, and ${\rho}$ and Rsh were increased. In this study, BZO layer plays an important role of conducting path for electrons generated by incident light onthe CIGS absorption layer. Therefore, the degradation of BZO layer characterized by the parameters of ${\mu}Hall$, ${\rho}$, ${\sigma}$ and Rsh, affect to the cell efficiency.

  • PDF

Sputtering Yield and Secondary Electron Emission Coefficient(${\gamma}$) of the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ Thin Film Grown on the Cu Substrate by Using the Focused Ion Beam (Cu 기판위에 성장한 MgO, $MgAl_2O_4$$MgAl_2O_4/MgO$ 박막의 집속이온빔을 이용한 스퍼터링수율 측정과 이차전자방출계수 측정)

  • Jung K.W.;Lee H.J.;Jung W.H.;Oh H.J.;Park C.W.;Choi E.H.;Seo Y.H.;Kang S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.395-403
    • /
    • 2006
  • It is known that $MgAl_2O_4$ has higher resistance to moisture than MgO, in humid ambient MgO is chemically unstable. It reacts very easily with moisture in the air. In this study, the characteristic of $MgAl_2O_4$ and $MgAl_2O_4/MgO$ layers as dielectric protection layers for AC- PDP (Plasma Display Panel) have been investigated and analysed in comparison for conventional MgO layers. MgO and $MgAl_2O_4$ films both with a thickness of $1000\AA$ and $MgAl_2O_4/MgO$ film with a thickness of $200/800\AA$ were grown on the Cu substrates using the electron beam evaporation. $1000\AA$ thick aluminium layers were deposited on the protective layers in order to avoid the charging effect of $Ga^+$ ion beam while the focused ion beam(FIB) is being used. We obtained sputtering yieds for the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ films using the FIB system. $MgAl_2O_4/MgO$ protective layers have been found th show $24{\sim}30%$ lower sputtering yield values from 0.244 up to 0.357 than MgO layers with the values from 0.364 up to 0.449 for irradiated $Ga^+$ ion beam with energies ranged from 10 kV to 14 kV. And $MgAl_2O_4$ layers have been found to show lowest sputtering yield values from 0.88 up to 0.109. Secondary electron emission coefficient(g) using the ${\gamma}$- FIB. $MgAl_2O_4/MgO$ and MgO have been found to have similar g values from 0.09 up to 0.12 for indicated $Ne^+$ ion with energies ranged from 50 V to 200 V. Observed images for the surfaces of MgO and $MgAl_2O_4/MgO$ protective layers, after discharge degradation process for 72 hours by SEM and AFM. It is found that $MgAl_2O_4/MgO$ protective layer has superior hardness and degradation resistance properties to MgO protective layer.

Generation of Testability on High Density /Speed ATM MCM and Its Library Build-up using BCB Thin Film Substrate (고속/고집적 ATM Switching MCM 구현을 위한 설계 Library 구축 밀 시험성 확보)

  • 김승곤;지성근;우준환;임성완
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.37-43
    • /
    • 1999
  • Modules of the system that requires large capacity and high-speed information processing are implemented in the form of MCM that allows high-speed data processing, high density circuit integration and widely applied to such fields as ATM, GPS and PCS. Hence we developed the ATM switching module that is consisted of three chips and 2.48 Gbps data throughput, in the form of 10 multi-layer by Cu/Photo-BCB and 491pin PBGA which size is $48 \times 48 \textrm {mm}^2$. hnologies required for the development of the MCM includes extracting parameters for designing the substrate/package through the interconnect characterization to implement the high-speed characteristics, thermal management at the high-density MCM, and the generation of the testability that is one of the most difficult issues for developing the MCM. For the development of the ATM Switching MCM, we extracted signaling delay, via characteristics and crosstalk parameters through the interconnect characterization on the MCM-D. For the thermal management of 15.6 Watt under the high-density structure, we carried out the thermal analysis. formed 1.108 thermal vias through the substrate, and performed heat-proofing processing for the entire package so that it can keep the temperature less than $85^{\circ}C$. Lastly, in order to ensure the testability, we verified the substrate through fine pitch probing and applied the Boundary Scan Test (BST) for verifying the complex packaging/assembling processes, through which we developed an efficient and cost-effective product.

  • PDF

GHz Bandwidth Characteristics of Rectangular Spiral type Thin Film Inductors (사각 나선형 박막 인덕터의 GHz 대역 특성)

  • Kim, J.;Jo, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • In this research, characteristics of air core rectangular spiral type inductors of ㎓ band are numerical analyzed. The basic structure of inductors is a rectangular spiral having 390${\mu}{\textrm}{m}$${\times}$390${\mu}{\textrm}{m}$ size, 5.5 turns, line width of 10 ${\mu}{\textrm}{m}$ and line space of 10 ${\mu}{\textrm}{m}$. Frequency characteristics were simulated up to 10 ㎓. The substrate was modeled as Si, Sapphire, glass and GaAs and the conductor as Cu. The thickness of the conductor was fixed at 2. The number of turns was n.5 to make the input and output terminals to be on the opposite sides. The initial inductance of the basic inductor structure was 13.0 nH, maximum inductance 60.0 nH and resonance frequency 4.25 ㎓. As the dielectric constant of the substrate was increased, the initial inductance varied only slightly, but the resonance frequency decreased considerably. As the number of turns was varied from 1.5 to 9.5, the initial inductance was increased linearly from 2.9 nH to 15.9 nH and, then, saturated at 16.9 nH. The Q factor increased only slightly. The line width and line space of inductors were varied from 5 ${\mu}{\textrm}{m}$ to 20 ${\mu}{\textrm}{m}$, which resulted in the decrease of the initial and maximum inductances. But the resonance frequency was increased. Q factor displayed an increase and a decrease, respectively, when the line width and line space were increased.