본 연구는 초고집적회로의 금속 배선으로써 보다 유용할 것으로 기대되는 구리박막의 화학적인 증착기술에 관한 것으로 precursor 물질로는 (hfac)Cu(I)VTMS ; (hevaflouoroacetylacetonate trimethyvinylsilane copper)로 명명된 금속 유기 물질을 사용하였다. 실험시스템의 초기 압력은 $10^{-6}$ Torr를 유지하고, 시스템의 챔버압력과 기판온도가 조정 가능하도록 설계, 제작되었다. 공정 조건에 따른 구리 박막 결정의 성장속도, Grain size, 전기적 성질을 측정하였다. 구리 박막을 증착하기 전에 W(tungsten) 또는 TiN(titanium nitride)이 증착되어 있는 실리콘 웨이퍼를 사용하였다. 본 연구에서는 $250^{\circ}C$이하의 상대적으로 낮은 실리콘 웨이퍼 온도에서의 실험이 가능하였으며 헬륨을 carrier gas로 사용하였는데 연구 결과 구리 박막 증착율이 $220^{\circ}C$에서 최대 $1,800\;{\AA}/분$으로 증가한 반면 표면 거칠기는 $200\;{\AA}$를 갖는 다결정 구리 박막을 관찰하게 되었다. 기판 온도가 $250^{\circ}C$이하일 때의 W(또는 TiN)과 $SiO_{2}$ 기판사이에서 구리 증착 선택성이 관찰되었으며, 최적의 기판 증착 온도는 약 $180^{\circ}C$와 반응용기 압력 0.8 Torr로 나타났다.
We investigated recovery in $Au/YBa_2Cu_3O_7$ (YBCO) thin film meander lines on sapphire substrates. The meander lines were fabricated by patterning YBCO films coated with gold layers. The lines were subjected to simulated AC fault current and then small current was applied for recovery measurements. The samples were immersed in liquid nitrogen during the experiment. After the fault, the resistance decreased linearly, first slowly and then fast to zero. The initial slow decrease was due to the decrease of the meander line temperature, whereas the fast decrease was originated from the transition from the normal state to the superconducting state. The recovery speed depended on the size of samples, and was faster in the smaller samples during the whole period of recovery. The experimental results were analyzed quantitatively with the concept of heat transfer within the sample and to the surrounding liquid nitrogen. A heat balance equation was solved for the initial phase of recovery, and an expression for the time dependence of resistance was obtained. The result agreed with data well.
A non-vacuum process for $Cu(In,Ga)Se_2$ (CIGS) thin film solar cells from nanoparticle precursors was described in this work CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials $(CuI,\;InI_3,\;GaI_3\;and\;Na_2Se)$ in organic solvents, by which fine CIGS nanoparticles of about 20nm in diameter were obtained. The nanoparticle precursors were mixed with organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of CIGS with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents ud to burn the organic binder material. Subsequently, the resultant (porous) CIGS/Mo/glass simple was selenized in a two-zone Rapid Thermal Process (RTP) furnace in order to get a solar ceil applicable dense CIGS absorber layer. Complete solar cell structure was obtained by depositing. The other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.
The stochiometric mix of evaporating materials for the $CdGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_{2}Se_{4}$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},345cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_{2}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high Quality crystal and neutral bound exiciton $(D^{0},X)$ having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.
The stochiometric mix of evaporating materials for the CdGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 630$^{\circ}C$ and 420$^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CdGa$_2$Se$_4$ single crystal thin films measured from Hall erect by van der Pauw method are 8.27x10$\^$17/ cm$\^$-3/, 345 $\textrm{cm}^2$/V$.$s at 293 K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on CdGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$\_$X/) existing only high quality crystal and neutral bound exiciton (D$\^$0/,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excision were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV,
Hydrogen production from water using solar energy is attractive way to obtain clean energy resource. Among the various solar-to-hydrogen production techniques, a combination of a photovoltaic and an electrolytic cell is one of the most promising techniques in term of stability and efficiency. In this study, we show successful fabrication of precursor solution processed CIGS thin film solar cells which can generate high voltage. In addition, CIGS thin film solar cell modules producing over 2V of open circuit voltage were fabricated by connecting three single cells in series, which are applicable to water electrolysis. The operating current and voltage during water electrolysis was measured to be 4.23mA and 1.59V, respectively, and solar to hydrogen efficiency was estimated to be 3.9%.
In order to investigate the possibility of using mixed rare earth $(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-x}$ (NEG123) as the superconducting layer of the HTS coated conductor, the NEG123 thin film was deposited epitaxialy on LAO(100) single crystal and IBAD_YSZ metal templates by pulsed laser deposition. Systematic studies were carried out to investigate the influences of deposition parameters of PLD on the micro structure, texture and superconducting properties of NEG-123 coated conductor. Deposition at oxygen partial pressure of 600 mTorr was needed to routinely obtain high quality NEG123 films with $J_c$'s (77K) over 2 MA/$cm^2$ and Tc's over 90K (${\Delta}T{\sim}2\;K$). We verified from magnetization study that the NEG123 has an improved in-field Jc as the field increases at temperatures between 10 K and 77 K compared with Gd123. The $J_c$ (77K, self field) and the value of onset $T_c$ of NEG123 thin film on LAO substrate was $4.0MA/cm^2$ and 92K, respectively. This is the first report, to the best of our knowledge, of coated conductors with NEG123 film as the superconducting layer which have Ic and Jc over 40 A/cm-width and 1.6 MA/$cm^2$ at 77K, self field. This study shows the possibility of using NEG123 film as the superconducting layer of the HTS coated conductor which can be used in high magnetic field power electric devices.
청색 발광 SrS:CuCl TFEL 소자의 휘도를 향상시키기 위하여 황 압력과 열처리 조건을 최적화하여 SrS:CuCl TFEL 소자를 제작하였다. 전자빔 증착 장비를 이용하여 SrS:CuCl 형광체를 6000 ~ 8000 ${\AA}$ 두께로 증착 시킨 후, 800 $^{\circ}C$에서 3분 동안 열처리하여 TFEL 소자를 제작시켰다. 형광체 결정은 열처리 온도 및 열처리 지속 시간의 증가에 따라 향상되었다. SrS:CuCl TFEL 소자는 468 nm 와 500 nm에서 발광 피크 파장을 나타내었고, CIE 색 좌표는 x = 0.21, y = 0.33로 청색 빛이 방출되었다. SrS:CuCl TFEL 소자의 휘도$(L_{40})$는 형광체 증착 중의 황 압력에 크게 의존하여 황 압력을 $8{\times}10^{-6}$ torr에서 $2{\tiems}10^{-5}$ torr로 증가시켰을 때 262 cd/$m^2$에서 728 cd/$m^2$로 증가되었다.
keV ion beam irradiatin for surface modification and thin film growth have been discussed. keV ion beam irradiation in reactive gas environment has been developed for improving wettability of polymer, and for enhancing adhesion to metal film, and adventages of the method have been reviewed. An epitaxial Cu film on Si(100) substrate has been grown by ionized cluster beam and changes of crystallinity and surface roughness have been discussed. Stoichiometric $SnO_2$ films on Si(100) and glass have been grown by a hybrid ion beam Deposition(2 metal ion sources+1 gas ion source), and nonstoichiometric $SnO_2$ films are controlled by various deposition conditions in the HIB. Surface modification for polymer by kev ion irradiation have been developed. Wetting angle of water to PC has been changed from 68 degree to 49 degree with $Ar^+$ irradiation and to 8 degree with $Ar^+$ irradiation and the oxygen environment. Change of surface phenomena in a keV ion beam and characteristics of the grown films are suggested.
Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.